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Introduction

Go is a board game with simple rules, yet very complex gameplay and adt-

gies. It has a strong support in many countries, with millions of playsrworld-

wide! As many of these (mainly amateur) players play onlifeand the top

professional matches are usually recorded and published in magasiror on-
line (Yevstygnyevev, 2013; van der Steen, 2013), there existdaage number of
game records for players of di erent skill. Moreover, since the ganheld a strong
social status in the past, there are lots of historical records aglly though mainly

from Japan of 17th century and later (Hall { Fairbairn, lwinter 201%E). Usually,

the records of the master-level players are studied manually toagp a deeper
understanding of the game and to improve one's intuition.

So far, not much has been done in analysing these records using poters.
There are programs that serve as tools to study the opening pleasf the game
by giving simple statistics of next move from professional games @@z, 2012;
de Groot, 2005). The professional games have also been used mmder Go;
patterns from the professional games are used as a heuristic tgonove the tree
searching, e.g..(Coulom, 2007). Apart from these, we are not awaof any other
uses.

In (Bauds { Moudk, 2012), we have devised a general methalology for eval-
uating a player based on a sample of games he played. By comparing #val-
uations of di erent players we were able to distinguish between plagge of e.g.
di erent strengths, under the assumption that players who haveimilar strength
should have similar evaluations.

This work presents the methodology, extended in several ways:

1. We introduce new features into the evaluation and compare thetontribu-
tions.

2. We re ne the machine learning methods used to analyze these kesdions.

3. We test the methodology on larger samples of games, and imprave
dataset sampling to be more accurate.

4. We demonstrate the concept by a web application, which also sesvas
a simple teaching aid to Go players, while gathering more data.

Outline

This thesis is organized as follows. Firstly, we present the game of @ohap-
ter [I). Secondly, we discuss the problem at hand and sketch ourpapach to it
(Chapter[2). Next two chapters present the features used toxtact information
from the games (Chapte13) and the machine learning methods uséal learn
the dependencies (Chaptell4). The actual experimental resulese detailed in
Chapter[8. Finally, we discuss the results and future directions (Gipter [G).

1A Japanese 2002 estimate of Go Census (2002) gave an estimate 2f millions of Go
players worldwide.
2E.g. on the Kiseido Go Server |(Shubert| 2013a).
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1. Game of Go

The game of Go is one of the oldest board games known to humankirttie

earliest records spanning back to 500 B.C. (Fairbairn, 1995). As tarpassed by,
Go became an important part of East Asian culture. Especially in Japa Go has
had a very important social status. Despite this popularity, the gane was largely
unknown in the West until the beginning of the 20th century ((van Es, |2005).
Today, Go's popularity is spread almost all over the globe, though thstrongest
players still reside in Korea, China and Japan.

Go is a two-player game with perfect information. The two players te turns
in placing stones on free intersections on a playing boarddban. The rst player
has black stones, the second one has white stones. The most widedgd board
size is 19 19 intersections, the 13 13 or 9 9 boards are also quite usual.

The simplicity of rules implies that a player can play on almost all of the
empty intersections. In no way does this mean that every valid movs a good
move as well. Quite the opposite is true | the majority of valid moves ae
terrible. This means that Go has a very large branching factor, whicmakes it
a hard problem for computers. The computer Go is currently a venyopular eld
of study, because it eludes the traditional Al techniques. For inanhce, brute-
force searching is not applicable in Go, because the search spagdosles long
before any nearly good solution is found. In the last decade, a bigogress has
been made with Monte-Carlo tree search method8ICTS for short). The main
idea is that the probability of a player winning given he plays a particulamove
can be approximated using random simulations. It is surprising how Wehis
technique performs. Recently (in march 2012), a computer pragn Zen beat
a former top Japanese professional Takemiya Masaki at a 4-seohandicap game
(the computer being the weaker player) (Wedd, 2013). A good survey on the
MCTS is given by Browne et al. [(2012).

1.1 Basic Rules

This section presents a minimal working overview of the game rulesdait might
be skipped if you are familiar with the game. However, it is not meant astutorial
to the game, for there is an abundant supply of study material onlen For
example, see Sensei's Library (2013k) for a nice introduction.

Go is a game which has very simple rules. Playémsake turns in placing black
and white stones at the free intersections on the board. Playersagnchoose to
give up on the right to play, this is called apass When both playerspass the
game is nished. Next, we shall clarify what comprises the moves.

De nition. A liberty of a stone (or a group of stones) is an open intersection

1The top programs combine many techniques in line with MCTS, usually by skewing the
distributions obtained by random simulations in direction given by someprior knowledge. This
might include knowledge from pattern matching (good shapes have énus) dictionaries of open-
ings (good openings have bonus), local searches and other hetidgs. See (Wikipedia, 20183) for
a good overview.

2In Go, the black player Black is referred to as she, while the white playeMhite is referred
to as he.
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Figure 1.1: Basic situations.

directly next to the stone (or in the direct neighbourhood dfie group of stones).

For example, the ston@ in Figure [1.1 has 3 liberties (intersections at the

top, left and bottom of the stone, labelled 1, 2, 3 in the gure), th@ group of
3 stones has 6 liberties in total. We say that a stone (or a group ofém) is in
atari if it has only one liberty.

Essentially, there are only two main rules in Go:

De nition.  Rule of liberties . Every stone (or group of stones) on the board
must have at least ondiberty. Stones that have just lost their lastiberty are
removed from the board, we say they weoaptured by the player who removed
the last liberty.

De nition. Rule of ko. The stones on the board must not repeat any previous
position of stones. Such moves are forbiddén.

Example situations: (see Figure_1.1)

The rst rule de nes basic mechanics of the game. For example, lmse
the 3 white stones in upper right corner of Figuré_1l1l are iatari, Black
can capture them by playing ata to take the last liberty away. Once he
places his stone af, he removes the 3 white stones from the board.

Because it has only one remaining liberty (ab), the black group of stones
in the lower right corner can be captured if White plays ab. E ectively,
at the time when White puts down his stone atb, this stone also has no
liberty. This \suicide" is only allowed if the move itself removes the last
liberty of some other stones. These stones are removed from theeme by

3This rule e ectively denies in nite loops.



the rst rule and the capturing stone regains liberties. By the end fothe
move, once White removes the black stones, the white stone lathas 2
liberties | at H1 and J2.

The white group in the upper left corner has two liberties (coordinas A7
A9). To capture the group, Black would need to take both of theskberties
away with a single move, but this cannot be done. Therefore, the Vih
group in the upper left corner is unconditionallyalive.

To illustrate the ko-rule, lets have a look at the lower left of the gure.
Suppose it is Black's turn and she captures tt@ stone by playing atc.

Next, it is White's turn, but because of theko-rule, he cannot recapture the
black C2 stone by playing at D2 and so he has to play elsewhere. Besau
this other play changes the position of stones on the board, he ceapture
the black stone the next time he plays.

De nition.  An eye of a group of stones is a liberty that is enclosed by stones of
one colour.

The group in the lower right corner of Figure_Lll has one eye, the gy in
the upper left corner has two eyes.

De nition. A group of stones that has at least two eyes is callative | it
cannot be killed. There is no way for the opponent to capturket stones. On the
other hand, a group that can neither make two eyes, nor be nesd is dead.

The black group in the lower right of Figure[ Tl isdead whereas the white
group in the upper left isalive.

Scoring and rulesets

The main objective players are trying to accomplish is to have more mbs than
the opponent and thus win the game. So far, we have only presemteiles that
de ne where the stones can be put. The scoring proceeds as fodow

De nition.  Territory scoring (Japanese scoring| during the course of the
game, each player keeps the stones he has captured (thesealted prisonerg.

At the end of the gamedead stones are removed from the board. The dead black
stones are added to White's prisoners and vice versa.

The total number of points each player has equals the numbéfree intersec-
tions enclosed by his stones plus the number of his prisonddgsually, White also
receives a compensation (usuallg:5 points) for Black playing rst, this compen-
sation is calledkomi .°

The player with more points wins the game.

Example of a nished game: (see Figure_LR)

Because the area marked witla is enclosed by black stones, it is Black's
territory. There are 18 open intersections, so Black has 18 temity points
here.

4E.g. by connecting with a group which is alive or by capturing the encloing enemy stones.
5By playing rst, Black has the initiative in the beginning.
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The area labelled withb is not completely enclosed by white stones, because
there is the black group of 5 stones marked witd. But since this group
does not havetwo eyesand there is no way for Black to make them, it
is regarded asdead (For example, by playing at A8, White can always
capture the two Black stones at A7 and B7. If Black plays A8 in ordeto
prevent this, White captures the 4 stones by playing B9.) Notice, #t if
there was a black stone at, the group would bealive. When White played
¢ he thereforekilled the group. In this situation (the rst one to take the
point has the prot) we say that the ¢ point is a vital point (of the black
group in the upper left corner). Usually, it is a good idea to play suchgints
before the enemy does.

So, White has 22 points of territory here (including the intersectianunder
the 5 dead black stones) plus 5 points for the black prisoners.

Next, there are 2 intersections at. Because they are not solely enclosed
by any of the players, these intersections are not counted as tigory. We
call such intersectionseutral points.

Finally, there is the white group labelled withf in the bottom-right corner.
This group has two eyes (H2, J1) and is thus alive. White has anothér
points of territory here.

To sum up, Black has 18 territory points in the bottom-left corner.Because
he killed the Black's group in the upper left corner, White has 5 prisomng
plus 22 territory points for the upper part. White also has 2 points in
the lower-right corner. Finally, because Black was the rst to playWhite

receives a compensation of 6.5 points.

Together, Black has 18 points, while White has 22 +5+ 2 + & = 355
points. White wins with a clear lead.

In the prior example, determining thestatus (whether it is alive or dead
of the black group in the upper left corner was quite easy. It is notatessarily
always so. The disputes over statuses of groups are usually settlyy resuming
the game and playing the situation out.

There are also certain situations involving groups of both players vudh are
neither alive nor dead. This situation is calledseki (dual life). The situation
occurs when groups of di erent colors share some liberties and thst player to
Il one of the shared liberties gets captured. Therefore, neithgulayer will play
there and neither group of stones will be captured. See Sensei'srhity (2013i)
for a complex discussion of the topic.

It should be noted that there are other variations of the scoringral rules. For
example, under Chinese scoring, players get points Bmea under stonesnstead of
the territory enclosed by the stonesas we saw here. Both scoring methods do not
di er vastly, usually, the di erence is at most 1 point. Refer to|Sensi's Library
(2013h) for details.

Apart from the scoring method used, the rulesets may di er in theiapproach
to the ko situations and other minor settings. However, the gameplay andrat-
egy remains almost the same. See Sensei's Library (2013g) for dethoverview
of di erent rulesets.
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Figure 1.2: A nished game.

1.2 Rating and Handicap Games

Even though the basic rules of the game are quite easy and evenyvemall
children are able to absorb them, mastering the art of Go takes maryears of
study. To compare strengths of dierent players, a ranking sysim has been
devised. Traditionally, the ranks are divided intodan and kyu classes. The
dan classes are regarded awaster ranks, kyu ranked players are regarded as
students® (Wikipedial, 2012)

The kyu scale spans from absolute beginners (20-kyu), to moderately skille
players (1-kyu), the dan scale spans from 1l-dan (directly above the 1-kyu) to
9-dan.8

In comparison with other games, most notably Chess, Go is unigue irsanse
that even players with dierent skills can set up an even game. This isothe
using so-calledhandicap stones The weaker player can place down a certain
amount of stones before the game staft$ so that he has an advantage to begin
with. This advantage balances the di erence in strengths. The r&s are cleverly
scaled; the di erence in rank is equivalent to number of handicap stes needed.

SIntriguingly, this ranking system originally devised for Go during the Edo period in
Japan (Hall { Fairbairn, winter 2011b) has also been adopted in somemartial and ne arts
of eastern origin.

"Professional players also use the dan ranks, but the scaling is a bii érent. Approximately,
the rst professional dan (1-pro) is equivalent to amateur 7-dan Historically the di erence of
1 rank between two professional players was about 1/3 of a handap stone. Nowadays however,
the pro-dan scale serves as an indication of achievements, rathéman an exact comparison of
players' strengths. (Sensei's Library, 2013c)

8There exists a number of di erent ratings, that are often not directly comparable to each
other. For example, the KGS (one of the popular online Go serversB-kyu could play evenly
against European 7-kyu (the o cial European rank, given by the European Go Federation).
Refer to (Sensei's Library, 2013f) for a deeper comparison and digssion.

9The positions of these stones are de ned depending on their amotn



For example, 10-kyu player should place ve handicap stones agaires 5-kyu
player for the chances of winning to be roughly similar. Also, when theandicap
stones are in use, th&omi compensation is usually changed to 0.5 (to avoid a tie).

1.3 Important Concepts

The following lines present some important concepts of Go in a strdggimpli ed
manner.

1.3.1 Gameplay

The way humans play Go has some characteristics. The usual gamae be rough-
ly divided into three stages, openingf(iseki), middle game and endgameypse.
This distinction is very rough and there are no precise boundaries.oi@etimes,
the middle game ghting occurs almost immediately after the start, @netimes,
the middle game is \skipped" altogether.

The opening sketches the main territories and war zones, optimally in line
with some high level strategy. The stones do not usually come in diteaggressive
contact with each other during the opening. Usually, the cornersra occupied
rst, because it is easiest to get territory here (the corner tertory needs to be
enclosed only from two sides). After the corners, extending to ¢hsides and then
into the center are next big moves.

The middle gameis dominated by attack and defence. Players struggle to
reduce enemy territory, increase their own territory or otherwes gain an advan-
tage. Sometimes, a running ght occurs | a group which is not locally dive runs
away towards friendly forces in order to connect with them and asee life.

The endgamephase begins once statuses of all groups have been more or less
determined. In the endgame, players seek to gain local advantagpe the rst two
stages, it is usually critical to view the board globally (as groups in uece each
other), while the endgame may usually be broken down to individual irghendent
plays (how to combine them and how to choose the proper play is hotge a thing
that must also be regarded globally).

1.3.2 E ectiveness

In Go, the goal is to have more points than opponent. The player whsafely
encloses more territory with fewer moves than the opponent winsTherefore,
the e ectiveness of one's moves is of utmost importance. This doest limit us
to enclosing territory directly. The player who needs less moves ttabilize his
group (make sure it is alive) can \spend" the remaining moves e.g. tdtack
enemy groups, increase his own territory and so forth.

Shape

For example, the concept ofshape is an incarnation of this principle. Good
shaperefers to a formation of stones that has good tactical possibilitiespace
for eyes, high number of liberties, possibilities of escaping, and so @n the other
hand, bad shapemay easily be attacked, does not defend one's other weaknesses,
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Figure 1.3: Shapes. White has a good shape, while black stones fohm terrible
empty triangle.
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etc. Figure[1.3 shows such shapes. The white stones show a typgabd shape
(called the table shape). The white stones are connected, have adb liberties
and have a chance of forming an eye in the middle. The black stones However,
form a bad shape (the notoriously known empty triangle). This is a faation
of 3 stones that has the fewest liberties, not much eye-space arah usually be
attacked pro tably. Black will need to invest further stones to m&e these stones
useful.

Sente/Gote

Another really important concept is the notion ofsente and gote. We say that
a move (or a series of moves) sente if the opponent has to respond to it or
something bad happens to him (the burden of not responding is notovih the
initiative taken by not responding). On the other hand, when a playeplays agote
move, the opponent does not have to respond (the burden of nasponding is
relatively small), or the player who started has to respond to the ggnent's
response. Of course, the sequence might take more moves. Thpartant thing
is that with sente play, the player retains the initiative after the sequence ends.
With gote play, he does not.

For example, FigureZL¥4 shows an example endgame situation. Blaclscend
to edge ata is a sentemove, for if White does not protect atb, Black b kills the
white corner group by destroying its eye. Later, Black can utilize # stone at
a to reduce white territory by playing c, possibly again insente On the other
hand, if White decides to protect by playing ata before Black does so, he loses
the initiative, because Black is not forced to reply. Whitea is thus a gote move.

The sente play keeps the initiative, the gote play gives it to the opponent.
This does not mean thatgote is necessarily a bad move. It may be the case that
the player has nosente play anymore, or that by playing the gote move a player
neutralizes a bigsentemove of the opponent. Keeping an eye on what moves are
senteor gote is one of the most important things a player needs to learn in order
to improve. Keeping the initiative, making pro ts in sente preparing ownsente
plays while neutralizing opponent's is crucial in Go.

1.3.3 Balance of Power

Beyond the relatively simple local goals (such as keeping one's stoires good
shape), players usually follow some deeper strategy. For exammemeone who

10
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Figure 1.4: Sente and Gote. Black descend atis sente, Blackb would kill the
white corner group. Later, Black can playc.

likes to have secure territory will probably keep his stones near tlsdes and his
corners. Usually, moves played on third line (from the edge) are lthto invade,
so they guarantee relatively secure piece of territory. By playingnoa larger
scale (playing higher, and perhaps less safely) his opponent mightewer sketch
a much bigger area, which if turned into real territory would guaratee him the
victory.

Also, there is the concept obuter in uence. Player might have a strong wall
of stones facing the center, which | if used wisely | will provide invalua ble help
in the middle game ghts and indirectly provide score points. For exapie, if
you have a strong position right where the unstable enemy's groupl@oking for
support, then you managed the situation well, remember that poistare forboth
dead enemy stones and enclosed intersections.

To sum up, player should try to balance the in uence with territory, thick-
ness(thick positions have little or no weaknesses) witlspeed(fast positions have
potential to expand and secure large territories, yet they inhendly have weak-
nesses) to maximize the gain and win the game. There exist whole aoitbgies of
books dealing with these concepts, we have just presented a smsitlallow part
of it to illustrate the complexity of the matter. If you want to learn more, the
Sensei's Library (2013a) is a good place to start.
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2. Methodological Approach

2.1 Central Problem

We shall now formalize the problem we are dealing with. Suppose we davset of
playersP and for each playep 2 P, we have a sample gf's gamesG,. Moreover,
suppose that for each playep we also have an externally given informatiog, 2 R.
For example, this might bep's strength. The central question is:What is the
relation between gamess, and the external informationy,? The motivation is
that understanding this relation may help with the general understnding ofy,.
In the example case wherg, is strength of playerp, this has obvious importance
| it might help a player to become stronger, deepen our understanthg of Go,
or just improve the performance of Go playing programs.

The methodology in this work deals with a slightly weaker questionsiVhat
can we deduce from gameS,? and How well can we predict the informationy,
supposing we knows,? We approach these questions by evaluating the gam@g
on a per-move basis and applying machine learning algorithms to theagwations.

Generally, we consider the problem not to be an easy one. A cruciaineipial
obstacle is illustrated by a Go proverb: \If you want to improve, do not look
on what moves do the professionals play, buvhy do they play them." In some
situations a particular move is perfect, other times the same move m® good
| without reasoning about why are the moves played, we cannot hope to fully
tackle the problem. Moreover, there are many other factors hieding the process,
to name a few:

Often, we are dealing with small samples of data.

The set of gamesG, may be taken from a larger interval of time, during
which the y, might have changed considerably.

The uniqueness of every single game introduces inhomogeneities itite
data.

Games might have dierent time setup. For example, very fastblitz"
games (time for one move is very small) do not make it possible to examin
the positions thoroughly; these games are mainly played by intuition.

During online games, players might not be concentrated fully on eagame,
resulting in unstable performances. For example, this is the case evh
opponents are from di erent timezones (for instance, one playés playing
in the morning, the other one in the night) as noticed in/(Sensei's Librg,

201.3f).

2.2 Processing Overview

The processing pathway presented in this work follows the struate from our
previous paper (Bauds { Moudk,| 2012). The pathway has two logical parts

!See (Sensei's Library, 2013e) for more proverbs.

12
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Figure 2.1: Simpli ed overview of the processing of data. Player's gasGy
are processed usingeature extraction part (FE). The resulting feature vectorv,
serves as an input for theMachine learning part (ML) which outputs predicted
y% For players from the training dataset, the machine learning methis learn
from v, and the external informationyy,.

| feature extraction step, where we transform a set of player's @mes into an
evaluation vector, and machine learning, where we learn the depemty between
evaluation vectorsv of di erent players and the information y we study in each
particular dataset.

Dataset

Dataset is a set of tuples where the rst element represents gas@, of a play-
er, and the second element represents the external informatigp 2 R we are
studying.
D =f(GCi;vyi); .0

Because a game is played by two players and we need to distinguishwesn
them, each game is accompanied with color of the player of interegq color).
To emphasize this, we us&C, instead of G,. The GC, is a set of tuplesGC, =
f (game; colory); :::g (we will call it a set of colored gamesf player p).

Feature extraction

The goal of the feature extraction part is to make a complex evaltian v 2 Rf
out of a set of colored game&C. The process is detailed in Chaptér] 3.

Machine learning

The machine learning part tries to capture the dependency betweevaluation
vectorsv, and the external informationy,. Details are given in Chaptei 4.

13



3. Feature Extraction

This chapter presents a methodology for extracting informationrém a set of
colored gamessC (see Sectiol 2]2 for de nitions).

In some of the methods below, we will need a set of games, we calAijt
that reasonably represents all the games from the datasBt. By a reasonable
representation we mean that the seA has the same (or almost the same) dis-
tribution of moves and other \events" of interest. All the gamesrom D serve
ideally, typically some reasonably large subset @ performs well, while saving
computational resources.

The feature extractors basically map a set of colored games to atigre vector:

De nition. A feature extractor is a function
f:f(GC)=v
whereGC is a set of colored games, and is the resulting feature vector.

In the sections to come, we will separately present feature exttarsf we have
used. The machine learning methods in Chaptéi 4 will use the concastion of
these di erent features.

In the following text, we distinguish betweenraw features| the per-move
features matched by Pachi Go engine (see the next section) | andormal features
| results of applying aforementioned feature extractorson a set of colored games.
The features are computed using the information from theraw features Also,
any single element; (of a feature vectorv) is called anattribute .

The implementation details are given in Appendix_B.

3.1 Raw Features and Pachi

To extract the raw features we have used the Pachi Go engine (Bauds et al.,
2012). Apart from being quite a good-performing Go bot, Pachi gme has
a replay mode, that scans a single game on a per-move basis. Fohaaove, it
outputs a combination (calledpattern) of several raw features (key-valued pairs).
These raw features include:

atari ag | whether the move put enemy stones in atari,
atari escape ag | whether the move saved own stones from atari,
capture | number of enemy stones the move captured,

contiguity to last move | the gridcular distance (presented below) from
the last move,

board edge distance | the distance from the nearest edge of the board,

spatial pattern | con guration of stones around the played move.
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Figure 3.1: An example spatial pattern of size 6. The dashed part§ the goban
are not regarded.

The spatial patterns are always normalized (using a dictionary, belg to be
Black to play and to be invariant under rotation and symmetry. For @ach move,
spatial neighborhoods of sizes 2 to 6 in gridcular metric are matched

For example, the following pattern

(border: 2; cont: 5; spatial : 88)

has three raw features. The rst one, the distance from the bod edge is 2,
which means that the move is on the third line. The contiguity featuresays that
the gridcular distance from the last move is 5. From Figure 3.2, we caee that
distance 5 is the horse move approach (both Go and Chess have invsacalled
a horse move, with the same L-shape).

The last feature | spatial pattern | gives index to the spatial dictio nary
(below), the particular pattern for this example is shown in Figuré_3l1From the
gure, we can see that the move@ was probably some low counter-extension

(or invasion) to answer@.

Gridcular metric

Gridcular metric approximates a circle on the square grid of a gobait.is de ned
by the formula:

dix;y) = jxj+jyj+max(jxj;jyj)
The gridcular metric has been successfully applied for pattern-n@iting in

e.g. (Stern et al.,. 2006; Coulom, 2007). The gridcular distance is illugted in
Figure[3:2.

Spatial dictionary

Before running the engine on a per game basis, the engine is run on gyda
number of games (theA set) to create a dictionary of spatial patterns that have
occurred at leastN times, N chosen so that the number of spatial patterns is
su ciently large. The raw spatial feature matcher uses this dictiomary to look
for spatial patterns (and their rotations, color inversions if Whiteis to play,
symmetrization) during the matching.
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Figure 3.2: The gridcular metric on a 7 7 grid. The numbers show the grid-
cular distance from the center, the background lightens with incesing distance.
Inspired by (Stern et all., 2006).

3.2 Pattern Features

This section presents gattern feature extractor that tries to capture a distribu-
tion of patterns among the colored game&C. In this case the pattern is a tuple
consisting of the atari ag (and atari escape ag) and the spatiapattern raw
features. Other raw features are ignored because the use ofrencaw features
causes a big granularity of the data | a lot of patterns that are not played often.

This feature extractor counts the number of occurrences of éhtop N most
played patterns from GC. The counts are then normalized using one of the
normalization schemes. The process is detailed in Algorithih 1.

We presented this feature inl(Bauds { Moudk, 2012); this work extends it
slightly by testing two more normalization schemes (independent amqtoportion-
al) in addition to original linear normalization?.

Normalization

The normalization step in Algorithm[1 (line[11 in the pseudocode) is vernynpor-
tant to maintain the invariance under number of games in th&C. Without it,
the values ofv would increase proportionally tojGCj. To alleviate this, we use
one of following scaling schemes:

independent normalization | ¥ v3GCj,
proportional normalization | v w=sum),
linear normalization | min(v) is mapped to 1, max(v) to 1, the rest

is mapped linearly into the interval ( 1;1).

YIn the (Bauds { Moudk, 2012),lwe also used what could be calle d logarithmic normal-
ization but it did not perform well; see the paper for details.
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Algorithm 1: Pattern Feature Extractor
input : set of colored game&C, number of top patternsN, set of all
gamesA
output : feature vectorv

TopPatterns  PachiGatherTopNPatterns( A, N);
¥  Zeros(N);
foreach (game;colo) in GC do
foreach pattern in PachiGatherPatterns( game color) do
if pattern in TopP atterns then
i IndexOf( pattern, T opP atterns);
oi]  Mi]+1;
end
end
end
¥  Normalize( v);
return v
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3.3 Local Sente (Gote) Sequences

Besides the pattern feature, we have implemented some higher Ifeatures that
try to capture deeper concepts within the data. The rst one of hem deals with
sente and gote plays. We have discussed (see Chapier 1.3.2) thaeate play is
a move the opponent has to respond to or something bad happenshim. Often,
the reply is local, as we have seen in Figure1.4.

Assuming that sente and gote sequences are always locaagsumption of lo-
cality of replies) and that all local plays are part of somesente or gote sequence
(assumption of exclusivity is the basis of a method we have devised to make
statistics of sente and gote play within a game.

Certainly, the assumption of the locality of replies does not always ltbh Some-
times, a response to aente move has to be played on the other side of board.
Imagine, for example, that a large white group has one eye and it hasly two
possibilities to make the second eye. If Black neutralizes one of thekVhite
should not hesitate to make the second eye or his whole group diegcBuse the
two possible eyes of White's group might be distant from each othdhe Black's
play that destroyed one of the possible eyes might not be answetedally, though
it certainly is a sente move.

Neither the second assumption always holds. Two moves that are yda
next to each other might be separatgote plays, instead of a part of one larger
exchange.

Even though the assumptions are not always true, the resultingdture vector
proves to be useful, as detailed in Chaptér’s.1.2.

In the following, we view a gamey as a sequence of moves:

We consider thepassto be a special kind of move. Now, we shall formalize the
concept of locality within the g sequence.
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De nition.  (All the following de nitions are considered to be within te g se-
guence.)

We say that a movem; from g is ! -local if its gridcular distance from the
previously played moven; ; is less or equal td .

We say that a sequench®l;; = (m;;miq;::;my) foranyl i j jgjis
I -local if 8x;i<x |, movemy is! -local.

We say that an! -local sequencévl;; is maximal if it cannot be extended into
I -local M ° by adding movem; ; or mj.; .

We say that a maximal -local sequencé/;; is senteif color(m;) 6 color(m;).
Similarly, the M;; is said to begote if color(m;) = color(m;). The color(m) is
a color of a player who played the mova.

The passis not considered to be -local.

Lemma 1. Fora xed !, the game sequenagcan be covered by a set of disjunct
maximal ! -local subsequences.

Proof. It is obvious that if we have two neighboring! -local sequence$/;; and
M;+1 .« such that also the movem;.; is! -local, we can merge the two sequences
into M;x which is also! -local.

Therefore, if we start by splitting the g into jgj disjunct ! -local subsequences
Mi; of size 1, we obtain the cover by repeatedly applying the merge (if it pos-
sible) on neighboring pairs of these sequences until no more merges possible.

The nal set of sequencesCover, has only! -local sequences because the
merge operation preserves the locality and the initial splitd1; were ! -local,
they are maximal, because no more merges are possible and they areover
because the initial set was a cover and no elements are skipped dgrihe merge
operation. O

Based on theCover set, we can easily count the approximated statistics of
sente and gote plays as Algorithm[2 shows. The functiorisSente is a predicate
to test if the maximal ! -local sequence isente as de ned above. The gridcular
distance to determine the! -locality is taken from the contiguity raw feature.

3.4 Histograms Features

This section presents two histogram-based feature extractotisat focus on cap-
turing distributions of certain events within the games.

3.4.1 Border Distance

The task of the rst histogram feature is to capture the distribuion of distances
from the board edge. In Chaptei_1.3]13, we have brie y mentioned #t in the

opening, playing on third line generally stresses secure territoryhile higher lines
(e.g. the 4th) stress in uence. Frequently, the di erence of onéne has a huge
impact on the ow of the game. We could do a simple statistics of the bder

distance, but because the game has stages that di er signi cantfyom each other
(see Sectiori_1.311), one has a feeling that some sort of di erentiatibased on
the game stages should be used. One simple heuristic to tell the @ntr stage is
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Algorithm 2: Local Sequence Extractor

input : set of colored game&C, locality threshold !
output : feature vectorv

S 0

G 0
foreach (game;colo) in GC do

w N

[* The Cover function returns the Cover of game from the
proof of Lemmall with respect to !. */
4 foreach M in Cover(game !) do
[* We ignore opponent's sente and gote sequences. */
5 if M[1] == color then
6 if IsSente( M) then
7 ‘ S S+1;
8 else
9 \ G G+1;
10 end
11 end
12 end
13 end
/* We output the average number of Sente and Gote sequences
per game, and also their average difference. */
14 ¥ (S;G;G S)jGCj;
15 return v
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the number of the current move. (For instance, we can roughly wdhat rst 10
moves are usually the early opening.)

We have used a two-dimensional histogram in this feature extragto The
rst dimension is speci ed by the move's border distance, the secdrone by the
number of the current move. The size of each dimension is given byenials
dividing the domains. For example, if we us8yMoves = fh1;10;(10;1 )g for
the move coordinate (motivation is to distinguish between opening | sy rst 10
moves | and the rest of the game), and ByDist = fh1;3i;M;1 )g (distinguish
playing on rst three lines to stress territory from playing higher tostress the
in uence) to split the border distance dimension, then we obtain a hisgram of
total jByMoves] j ByDist j = 4 elements. In the end, the histogram is normalized
to establish invariancy under the number of games scanned (by diind the
histogram elements byjGCj).

The pseudocode is shown in Algorithml3. The functiodndexOfElement
(element, Intervals) returns the index of interval int 2 Intervals, such that
element 2 int.

Algorithm 3: Border Distance Histogram Extractor
input : set of colored game&C, an ordered set of disjunct intervals
ByDist , an ordered set of disjunct intervalByMoves
output : feature vectorv
1V Zeros(jByDist |, [ByMoves)) ;
foreach (game;colo) in GC do

N

3 foreach movein gamedo
/* We ignore the opponent's moves. */

4 if ColorOf( move == color then
5 bdist GetBorderDistance( move) ;
6 X IndexOfElement( bdist, ByDist ) ;
7 movenum  GetMoveNumbenfove) ;
8 Y  IndexOfElement( movenum, ByMoves);
9 VIXIY]  VIXIY]+1;
10 end
11 end
12 end

[* Serialize the normalized matrix into a vector. */
13 ¥ RowWise{/35GCj);
14 return v

3.4.2 Captured Stones

The second histogram feature re ects the distribution of captwed stones in dif-
ferent game stages. The motivation behind this is the fact that onsould expect
generally di erent numbers of captives in the opening | where the sbnes are not
usually in direct aggressive contact (see Sectign 1]3.1) | and in the elyame,
where e.g. small captures are quite common.

The methodology here is very similar to the previous feature extraar. The
rst dimension distinguishes between the game stages, the secatichension has
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a xed size of three bins. Along the number of captives of the playeaf interest
(the rst bin), we also count the number of his opponent's captivegthe second
bin) and a di erence between the two numbers (the third bin). See Korithm @l

Algorithm 4: Captured Stones Histogram Extractor
input : set of colored game&C, an ordered set of disjunct intervals
ByMoves
output : feature vectorv

V  Zeros(3, jByMoves) ;

foreach (game;colo) in GC do

foreach movein gamedo

if ColorOf( move) == color then

| X=0; /* The player. */
else

| X =1; [* The opponent. */
end

movenum  GetMoveNumbenfove) ;

Y  IndexOfElement( movenum, ByMoves);

capt GetNumCapturedStonesfove) ;

VIXIIY]  VIX]IY]+ capt

VI2IY]  VIOIlY] VIY];

end

end

[* Serialize the normalized matrix into a vector. */

16 ¥ RowWiseY3GCj);

17 return v
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3.5 Win/Loss Statistics

Finally, we came up with a pair of very simple features which make statiss
of wins and losses and whether they were by points or by resignatton\When
player resigns, he declares his loss without nishing the game.)

For example, quite a lot of weak players continues playing already logames
until the end, mainly because their counting is not very good (theyanot know
there is no way to win), while professionals do not hesitate to resigntifey think
that nothing can be done.

For the colored games ofsC we count how many times did the player of
interest:

win by counting,

win by resignation,

2Sometimes | mainly in online games | players might also lose on time. In rar e cases, the
game might as well end as a tie or be un nished or forfeited. We disregrd such games in this
feature because the frequency of these events is so small it wouldquire a very large dataset
to utilize them reliably.
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lost by counting,
and lost by resignation.

The result of the rst feature extractor are these four numbes, divided by jGCj
to maintain the invariancy under number of games iIrGC.

Furthermore, for the games won or lost by counting, we count thaverage
size of the win or loss in points. Similarly, these two numbers in a vectéorm
the output of the second feature extractor.
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4. Machine Learning

This chapter presents machine learning methods we have used tigbout this
work. Most of the methods are well-documented in literature, so wenly give
a brief overview here.

In this chapter, suppose we have a set of data

and we want to nd a function r which is able to predict the valuey; from x;
with a reasonable accuracy and can generalize this dependency teeen pairs.

De nition. A regression function is a function
r:-RP1I R

wherep is a dimension of space of vectors giredictor variables We also call
the domainRP the feature space The codomainR is called a space oflependent
variables

The machine learning methods presented here are regardedlesmners For
a given dataTr, the learner should output a regression function(also called
predictor) which performs the regression of the dependent variable, as lead
from the data.

De nition. A learner is a function
I:T IR

where T is a space of all training datasets, andR is a space of allregression
functions.

Of course, someegression functiongerform better than others. Mainly, this
is because eaclearner has di erent (inherent) assumptions about the form of the
function it is looking for; we call this the inductive bias (of the learner and the
underlying model). For example, linear regression assumes that tlependency
between predictor variables and the dependent variables is linear. ft€n, we
deal with data where the underlying dependency and properties tife data are
unknown, so it is hard to say whether assumptions of a particular ndel are right.
To overcome this problem, usually a bunch of models is tried and the ¢ieone is
chosen.

Another approach, the one we use in this work, is not to choose tbest, but
rather try to combine the di erent approaches to create one higér-level method.
Because di erent methods have di erent biases, they might be abl® capture
di erent dependencies in the data. If we combined the methodddse learnerks
usefully, we could get better performance than with the \use the ést learner”
approach. We call this theensemble meta-learning

De nition. A meta-learner is a function
ml:P(L)!L

whereL is a space of all learners ané® denotes a power set.
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A meta-learner takes a set of learnerBl and returns a learner, possibly a re-
sult of aggregation of learners irBl.

The di erent base learnersare presented in Sectioh4.1. Thensemble meta-
learners are shown in Sectiori_4]2, and in Sectidn_4.3 we detail the process of
choosing the right base-learners into the ensemble. Finally, Sectidril discusses
evaluation of learners and feature extractors and proceduresr fcomparison of
their performances.

The implementation details are given in Appendix B.

4.1 Base Learners Overview

4.1.1 Mean Regression

The mean regressions a very simple method, which we use as a reference for
comparing performances of other learnetslt simply outputs the mean of they's
in the training set and is thus constant regardless of the input.

1 X
mean(x) = T y
J (x%y92Tr

0

4.1.2 Neural Networks

Arti cial neural networks (NN) are stan-

dard technique used for function approx-

imation. The idea behind this model is Output
inspired by the function of biological neu-

ral tissues. The arti cial neural networks

are known for their ability to nd depen- Hidden
dencies between inputs and outputs in the
training data and generalize this knowl-
edge to previously unseen inputs. This
section presents a very crude overview of
the method, see the monograph by Haykin
(1998) to learn more.

The arti cial neural network is a net- Figure 4 1: Illustration of the Iayered
work consisting of interconnected compu-topology of a simple feed-forward
tational units called neurons Each neuron neural network. The labels mark dif-
has several inputs; and one outputy. For ferent layers.
each inputx;, the neuron has a weighty;
which is incorporated into the computation as follows:

X
y="Ff(C wx)
j23

Input

where thef is a so-called activation function, for instance the sigmoid

LA random regression is also quite frequently used for this purpose.
2A special case of the logistic function (x) =(1+ e ™) !, wherer controls growth of the
function.
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There are many topologies (de ning the connections) of tharti cial neural
networks in use. We have used the typicaleed-forwardnetwork topology, where
neurons are organized in layers (onmput layer, arbitrary number of hidden
layers oneoutput layer). The layers are ordered so that the input to each layer
only comes from the previous layer, as shown in Figure ¥.1. The inputyé has
the same dimension as the input data, the outputs of these neumare set to be
the input data. Computation of other units proceeds by layers aceding to the
formula above. The activity of the output layer is said to be the redt of the
computation.

Training

To be able to approximate the target function, the weights of the euronsw;

need to be set up properly. This is a typical optimization problem, wera trying

to minimize the error on the training data. In this work, we use the iterative
rst-order gradient-descend method called RPROP|(Riedmiller { Bran, 11993).
Usually, the maximal number of iterations is bounded by a limitmax.

4.1.3 k-Nearest Neighbor Regression

The k-nearest neighboralgorithm (Cover { Hart, 1967) is a commonly used ma-
chine learning tool. The assumption of this model is that we can dedeidhe
dependenty by looking at vectors from the feature space that are close to the

De nition. For a xed k and x,

let the Nb = fx?;:::;x2g denote a set ok closest vectors tax from the T
with respect to some metric ;
let D be a vector of distances, such th@; = (x;x?);

for each x?, let y° be the associated dependent variable from the training set
T.

For a given x, the idea is to nd the nearestk vectors (the Nb set) from
the training set, and then estimate the dependent variablg from the associated

In this work, we have used the Manhattan§-1) and Euclidean @-2) distances
as . To infer the y, we de ne the model to be:

i :(=1 W(Di)yi0
:(:1 W(Di)

for some weighting functionw. We have used the inverse of the distance
betweenx and the particular neighbor instance:

y:

w(D;) = 1=D,

where is a parameter specifying the e ect of increasing distance. Wheneh
is equal to zero, we obtain the averaging scheme, where the weggthd not depend
on the distanceD; | all the k neighbors are valued equally. With increasing,
the x? instances closer to are preferred over more distant neighbors. When the
goes to in nity, the method essentially becomes one-nearest ndigi.
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414 PLS

The family of partial least squares(PLS) methods assumes that the observed
variables can be modelled by means of a few latent variables (their nber is
speci ed by a parameterl). The method projects the data onto this latent model
in a way that minimizes error. The process is somewhat similar to Prin@p
Component Regression.

For a good overview, see the work by Rosipal { Kamer (2006).

4.2 Ensemble Learners

In the introduction of this chapter, we have discussed that somietes, a com-
bination of learners can have better performance than the \winmetakes all”

approach. In practise, the three most used families of ensemblerleag methods
are bagging, boosting and stacking. In this work, we have experinted with the

bagging and stacking. These are detailed in the rest of this section.

4.2.1 Bagging

Bagging® is a simple ensemble method introduced by (Breiman, 1996). The idea
in bagging is to train a particular base learnetl on di erently sampled data
and aggregate the results. The method has one parametewhich speci es the
number of the data samples. Each of them is made by randomly chowsjTrj
elements from training setT r with repetition. The base learnetbl is trained on
each of these samples. The regression simply averages results fiee t resulting
models.

Breiman (1996) discusses, that this procedure is especially usdtirl learners
bl which are unstable | small perturbations in the data have big impact o
the resulting model. Aggregating the bootstrapped models essiatiyy introduces
robustness to such models. Examples of learners where the baggmbene cial
are neural networks (where over tting is often a serious problejxand regression
trees (especially variants without pruning) | Random Forests preented beneath
are essentially bagged tree learners.

On the other hand, it needs to be said that bagging can worsen thestfor-
mances of learners that are stable.

4.2.2 Stacking

The stacking (or stacked generalization) is a more sophisticated approach. The
original idea was pioneered by Wolpert (1992). The method is basically two
level hierarchical model of learners with a clever scheme for traigin The rst
level is composed by an ensemble of (possibly di erent) learners. dtsecond
level is a single learner which aggregates guesses from the 1st leweflels and
outputs the nal prediction. Figure shows the topology.

The training dataset is divided into smaller parts (by cross-validation see
Section[4.4.1). The 1st level learners are trained on some of themdatheir
generalizationbiases are measured by testing their performance on the rest. er'h

3The name bagging stands fobootstrapped aggregating .
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2nd level learner learns to correct these | it learns what the corret output
is, given what the 1st level predictors output. Algorithmb hopes tanake the
procedure clear.

Having di erent base learners often proves to be e ective. The p®rmance
of stacking is usually better than the best of the base learners osibwn. It is not
the case, however, that having badly performing learners in the sgmble does
not worsen the performance. Choosing the right set of 1st levehtaers is very
important if we are to attain the best performance, as is the choicef the 2nd
level aggregating learner and the number of folds for the crosalidation step.
We discuss this matter in Section 413.

Figure 4.2: The topology of the stacking ensemble method, B, C and D are
the level 1 learnersk is the level 2 learner.

Algorithm 5:  Stacking
input : an ordered set of 1st level learnemnsemble a level 2 learned 2,
training data Tr, number of foldsF olds
output : regression functionf

[* Training set for the level 2 learner. */
1 L2Tr fg ;
2 foreach (Tr%TsY) in CrossValidation( Tr, Folds) do
[* The level 1 learners trained on split TrC */

L1 (ensemblg(Tr9;:::;ensemblg(Tr9);
4 | foreach (x%y9 in Ts'do
/* Responses of level 1 predictors to unseen x% and the

real reply V° */
5 L2Tr  L2Tr [f ((L2o(X9;:::;L1,(x9);y90;
6 end
7 end
[* Train the level 1 learners on the real data. */
g8 L1 (ensemblg(Tr);:::;ensemblg(Tr));
[* Train the level 2 learner on the prepared data. */

9 L2 12(L2Tr);
10 return Compose(l, L2);
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4.2.3 Random Forests

Random Forests(Breiman, 2001) utilize an ensemble of tree learners to predict
the dependent value (for an overview of the regression treese {8reiman et al.,
1984)).

Each tree from the forest (of sizeéN) is trained on an independently chosen
subset of training data, exactly as the bagging in Sectidn 4.2.1 does.

However, there is one tweak of the process of learning one treeuring each
training step a random subset of attributes is chosen, and the genode is split
on the best attribute of this subset. See the Breiman's paper forethils.

The aggregation step is the same as in the bagging, simply averagirte t
outputs of the trees in the forest.

4.3 Choosing the Best Stacked Ensemble { Ge-
netic Algorithm

We have discussed that ensemble learning might be bene cial in terro$ per-
formance. For stacking, it is desirable to form the ensemble out oivdrse base
learners. The problem however is, how to choose the learners inteetensemble.
This becomes apparent once one tries to hand-tune the paranrstef di erent
base-learners, nd the best combination of them and nd the besaggregating
2nd level learner.

We have used a simple genetic algorithmGA) to search the space of possible
ensembles for the stacking. Genetic algorithms are an universatiogzation tool,
see (Whitley, 1994) for a good tutorial. The general procedure i®tative. In each
iteration, individuals (candidate solutions) are evaluated using d@ness function
and an intermediate population is formed by randomly choosing individis, with
probability proportional to the tness (roulette selection). Fromthis intermediate
population, the population for the next step is taken by making pairvgecrossover
operation and mutation on the newly formed individuals.

In the text below, we operate with a set of base learneBL , from which we
choose the learners into the ensemble. We should note that the sébase learners
BL is not strictly limited to learners we have listed as base in Section4.1 | weise
both di erently parameterized base learners and various baggedatmers (neural
networks and forests).

We have used a very simplencoding for an individual . An individual is
a triple of (I;Folds;v). The rst two values | and Folds de ne the 2nd level
learner. | is the index of the 2nd level aggregating learner iBL and Folds is
the number of folds for the stacking procedure. The vector of sizejBL | marks
a subset ofBL that forms the ensemble:% = 1 if the base learnerBL; belongs
to the ensemblex = 0 when it does not.

We have used two independennutations to modify the individuals. Firstly,
with probability P my , we either changd to any of 1:::jBLj, or we change the
number of Foldsto 2:::6, (MutateMin the pseudocode). Whether we chande
or Folds is decided using a further random coin toss. Secondly, with probabylit
P m, a random positioni in v is selected and the bitv; is swapped, MutateV in
the pseudocode).
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The crossover operation of parentsP = (I; Folds;~) and P%= (1% Folds®+
selects a random position 2 f 1:::jBLjg and outputs the following tuple

as the new individual. Please note that the index (and number of Folds) of
the 2nd level learner is taken from the rst parentP. This is compensated for by
the fact that crossover is always performed in pairs (lingés 8 9 in Algithm §).
The tness function we have used is inversely proportional tRMSE error
of the resulting stacked ensemble.
Also, to make sure we do not lose the best solution, we have used efitjs
which brings the top E individuals unchanged into the next generation.

Algorithm 6: Genetic Algorithm for nding optimal stacking ensemble
input : size of the populationS, size of the eliteE, probabilities of
mutation P my, and Pm,, maximal number of stepsMax
output : The best individual.

1 Pop RandomPopulation(S);
[* The best individual so far. */

2 Best fg ;
3 foreach iteration in 1:::Max do
4 evaluation  Fitness( Pop;
[* PI is the intermediate population. */
5 Pl RouletteSelection( P op evaluation);
/* PN is the intermediate population after Crossover. */
PN fg ;
foreach i in 1:::(S E)=2do

PN PN [ Crossover(PI[2 i],PI[2 i+1]);

PN PN [ Crossover(PI[2 i+1],PI[2 i]) ;
10 end
[* Save the best individual. */
11 Best TakeTop( op evaluation, 1);
[* Top E best continue unchanged. */
12 Pop TakeTop(Pop evaluation, E);
13 foreach individual in PN do

© 00 N O

14 if Rnd(0,1) <Pmy then

15 \ individual  MutateM(ndividual ) ;
16 end

17 if Rnd(©0,1) <Pm, then

18 | individual ~ MutateV(individual );
19 end

20 Pop Popl[f individual g;

21 end

22 end

23 return Best;
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4.4 Evaluating Learners

To compare performances of di erent regression functions (lewrs), we need
a reliable metric. The goal is to estimate the performance of a partitar regres-
sion function on real unseen data. We can estimate this performamby splitting
the data we have into parts that are only used for training Tr) and testing (T s).

4.4.1 Cross-Validation

Cross-validation is a standard statistical technique for estimatioof parameters.
The idea is to split the data into k disjunct subsets (calledfolds), and then
iteratively compose the training and testing sets and measure erso In each of
the k iterations, k-th fold is chosen as the testing data, and all the remaining 1
folds form the training data. The division into the folds is done randoty, and
so that the folds have approximately the same size (in cases whehe thumber
of samplegDj is not divisible by k, some folds are slightly smaller than others).
Please note that each sample from the data is a part of the testingld exactly
once (it is part of a training setk 1 times).
Refer to (Kohavi,1995) to learn more.

4.4.2 Error Analysis

To evaluate a regression functionr reliably, we are looking for a robust error
measure. Commonly, theanean square errotis used:

X
MSE (r) = % (r(x) y)?

(x;y)2Ts

Where r is trained on the training data Tr. The MSE is an estimate of
variance of the population of errors.

In this work, we have used theM SE's square-root,RMSE , which is an esti-
mate of standard deviation of the errors. Because the squareotds a monotoni-
cally increasing function, sorting the learners based dSE and RMSE vyields
the same order. Moreover, theRMSE has a clear interpretation | under the
assumption of normality of the distribution of errors with zero meancon dence
intervals on precision of the regression function can be given.

P( y vy )=(Q) ( 1) 06827
P(2 vy y° 2)=() ( 2) 09545

P(3 vy y° 3)=(3 ( 3) 09973

Where is the cumulative distribution function of the standard normal dis-
tribution. For instance, we can say that with the probability of 95%.a prediction
y°= r(x) for a feature vectorx is within a range of 2 from the true valuey. Of
course, these estimatesnly hold when the training and testing data are sampled
reliably (e.g. with many-fold cross-validation)and even more importantly, when
the dataset re ects the real distribution of the problem's data.

30



4.5 Evaluating Features and Attributes

We have devised a number of features that try to capture informi@n from a set of
games. Each of them is based on di erent rationale and assumptions numerical
measure of their performanceféature evaluatior) is bene cial from two main
points of view.

Firstly, evaluating the features tests whether (and how much) dthe particular
assumptions hold. Apart from being useful on its own, knowing whatan be
assumed about data gives directions for further improvement. Ehsecond, rather
practical, benet is that this feature evaluation allows to search fothe best
parameters of the feature extractors.

Besides the features as a whole, we can also analyze the perforceani par-
ticular attributes®. An analysis of attributes might be useful in numerous appli-
cations. For instance, if we nd out that there is a linear dependencbetween
attribute of playing a particular move and the strength of a playerwe could warn
the user: \this move is usually not very good". This might also have agications
in computer Go, as we discuss in Chaptét 6. Of course, correlatioaa$ not im-
ply causation and simply playing the \good" move more often does nohake us
really stronger? Still, the dependencies give hints about some deeper imbalance
in moves one plays.

45.1 Feature Evaluation

We have used a simple scheme for feature evaluation. The assummptaf this
scheme is that we are interested in features which perform good.eWe ne the
performance of the feature to be the performance of a xed lesr (the same
for all the features). Of course, the learner has to be able to behfrom the

usefulness of the features.

De nition. For a xed learner |lo, the RMSE error of feature extractor f on
data:

D = f(GGCi;yi);::0
is de ned as theRMSE error of |, on

T=1(f(GC)y);:::9,(GC;y) 2D

45.2 Attribute Evaluation

To analyze performances of single attributes, we have used thddaing scheme.
For the k-th attribute, we inspect the dependency between its valuesy (value
of kth attribute in the ith input vector) and the target variable y in the data
Tr=f(X;yi)g;i =1:::N.

4Remember from Chapter3, that we distinguish betweerfeatures and attributes . Example
of features are the pattern features, local sequence featurer the histogram features. An
attribute is a particular number v;, wherev is a feature vector. For example, ifv is a particular
pattern feature vector, v; is an attribute giving relative frequency of pattern i.

5The problem of course is that the \good" move is not good under all @rcumstances and
one should rationalizewhy and when s it so.
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The linear dependency betweeiX and Y is measured by the Pearson's cor-
relation coe cient r, (Rodgers { Nicewander, 1988):

_ cov(X;Y)

XY

Pearson'sr has a range oh 1;1i, where 1 means perfect linear dependence
(y's grow with growing x's), 0 means no linear dependence and -1 signals that
both vectors are anticorrelated ¥'s decrease with growing's). In the following
text, we shorten thery.y to r when the variablesX and Y are clear from the
text.

Limiting ourselves to linear dependencies is not a major issue. Because the
problem is quite hard, the dependencies are rather weak even withet simplest
linear model. If we were to test more complex dependencies, muchrendata
would be needed.
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5. Experiments

5.1 Strength

The major application of the methodology developed throughout th thesis is
the prediction of strength of players. This part documents the mrcess we un-
dertook. Firstly, we present the dataset we have gathered (Semn 5.1.1). Then,

performance of di erent feature extractors (Section 5.11.2) is afyzed. Next, we
investigate possibilities of strength prediction (Section’5.1.3). Finallyve scruti-

nize single attributes and their relationship with the strength (Sedbn 5.1.4).

5.1.1 Dataset

We have collected a large sample of games from the publicly availablehaves
of the Kiseido Go server|(Shubert, 2013b). The sample consistsaver 100 000
records of games in thesgf format (Hollosi, I2006).

For each rankr in the range of 6-dan to 20-kyu, we gathered a list of playePs
of the particular rank. To avoid biases, the sample only consists ochmes played
on 19 19 goban without handicap stones. The set of colored game§&C, for
a playerp 2 P, consists of the games playgy played when he had the rank. We
only use theGC, if the number of games is not smaller than 10 games. Similarly,
if the player played more than 50 games when at rank we randomly sampled
k of them, wherek was uniformly randomly chosen from intervahlQ; 501 .2 The
number of games is limited in this manner because for some ranks it isrthd@o
nd players with large samples | i.e. weak players and beginners (e.g. o 20-
kyu) usually improve very fast. For each of the 26 ranks, we gatredd 120 such
GC,. The distribution of number of games inGC, is comparable for all the ranks,
as Figure[5.1 shows. The target variable for regressigndirectly corresponds to
the ranks: y = 20 for rank of 20-kyu,y = 1 for 1-kyu, y = 0 for 1-dan,y = 5
for 6-dan, other values similarly. (With increasing strength, they decreases.)

5.1.2 Feature Evaluation

We evaluated the performance of various features as discusse8éttion4.5.0l. We
have used the initial hand tuned learner (from AppendiX_Cl3) as thevaluation

learner le,.> We have evaluated many di erent parameterisations for di erent
features, as detailed in Appendik C]1. Table5.1 shows the best paraters found
for each feature extractor along with theRMSE scores.

1Gameplay and strategies on di erent board sizes di ers. Similarly, handicap games force
the stronger player to play more aggressively than he would in an evegame.

2By cutting the number of games to a xed number (say 50) for large samples, we would
create an arti cial disproportion in sizes of GC,, which could introduce bias into the process.

3 With the exception of the Win/Loss points statistic, where we changed the number of
components of PLS regression to 2 (from 3 ife,). This was needed because this feature has
small dimension (2) which causes instability of the PLS with 3 latent variables.
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Figure 5.1: Boxplot of game sample sizes. The box spans betweerh2&itd 75th

percentile, the center line marks the mean value. The whiskers co@5% of the
population. The kyu and dan ranks are shortened to k and d.

Feature Extractor RMSE Parameters
Pattern feature 2.755 N = 1000, independent normalization,
A randomly sampled as 20% of all the games.
Local sequences | 5.754 I =10
Border distance 5.448 ByDist = fh1;2i;h38i;hi;h5;1 )g,
ByMoves = fh1;10i; hll; 64i; 65,200 ; 0L 1 )g
Captured stones 5.878 ByMoves = th1;60i;h61; 240 ;2411 g
Win/Loss statistics | 6.806 |
Win/Loss points 5.158 | (see Footnote lon pagel33)
None 7.507 (obtained by mean regression learner)

Table 5.1: Comparison of the best feature extractors of each kinthe complete
list of features evaluated is given in Appendik Cl1. The learner used fevaluation
is given in Appendix[C.3. The results were computed using 5-fold validanh.
The last row shows performance of the mean regression learned aerves for
comparison.

5.1.3 Regression

In the process of nding the best learner, we started with a hantlined learner
shown in AppendiX.C.3. Using this learner (which we found to performeasonably
well, as shown in Tabld 5]3) we evaluated di erent feature extractsr(previous
section). At rst the dataset was processed using the best faae extractors,
which were concatenated to form the datd for regression.

We then used the genetic algorithm (Section 4.3; abbreviated 6A) to nd
the best performing stacked ensemble. The initial population was ested by
the hand tuned learner. The parameters of the genetic algorithnre given in
Table [5.2.

Unfortunately, because of the large dimension of the feature tec (especially
the pattern feature which has dimension of 1000 in the best settipgnd large
dataset (3120 samples), the time needed for a single iteration waasry large in
this setting.* To speed up the process, we used a smaller pattern feature size

4More than 15 hours for rst iterations using parallel evaluation on Intel i3 - 4 core machine
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Parameter Value
Set of base learner8L Is given in Appendix[C.2.
Population sizeS 16
Elite size E 1
Number of iterationsMax | 100
Mutation probability Pm, | 0.2
Mutation probability Pm, | 0.5
Fitness function 1=RMSE of the resulting stacked learner. The
RMSE is computed using 5-fold cross-validation,

Table 5.2: The parameters of the genetic algorithm for the strenigtdataset.

Learner RMSE | Mean cmp
Mean regression 7.507 1.00
Random Forrest 3.869 1:94
PLS 3.176 2:36
Bagged NN 2.701 2:78
Initial hand-tuned learner | 2.635 2:85
Best GA stacking ensemble 2.607 2:88

Table 5.3: Regression performance of di erent learners on the fulataset. The
feature set used is shown in Table"5.1. The results were computedngs5-
fold cross-validation. Parameters of the best GA stacking ensefabare given in
Appendix [C.4, the other learners are taken from the Initial hand#ned learner
from Appendix[C.3.

(400 top patterns instead of 1000) and we subsampled the dataf® computing
the tness during the GA (by randomly taking 1=10 prior to the running of the
GA). We assume, that this is not a principial obstacle for nding the lest learn-
er, since the down-sampling (and lowering the precision of the pattefeature)
should degrade the performance of the learnesgstematically | the ordering of
tnesses is expected to be more or less the same, though the 8sevalues surely
di er. This is backed by the fact, that the best learner found by tre GA scored
very well when run on the full dataset. The run of genetic algorithnmook on
average approximately 2.5 hours per iteration, the machine specation is given
in Appendix [C.6.

The performance of the best ensemble found by the GA (on the fulhtaset)
are given in Table[5.B along with other learners to compare performees. The
resulting learner (AppendixC.4) is fairly complex as Figure 5.2 shows.v&ution
of the RMSE error in time is given in Figure[5.3.

5.1.4 Attribute Evaluation

We analysed di erent attributes for the best features from the pevious section
using the methodology presented in Sectidn 4.5.2. We studied attrites, which
were most strongly correlated with the strength of the player.

at 2.3GHz.
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Level-2 Learner

Figure 5.2: Structure of the best stacking ensemble found by thee@etic Algo-
rithm. The circle marks a normal learner, with description within, the\cloud"
denotes a bagging learner. The corresponding bagged learner isnexted using
the circle-ended arrow. Precise descriptions of the learners arieq in Ap-
pendix[C.4. Mean is the Mean regressionPLS Partial least squares regression,
RF Random Forrests,NN various neural networks andk-nn is obviously the
k-nearest neighbor learner.
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Figure 5.3: Evolution of RMSE error during the run of the genetic algorithm for
nding an optimal stacking ensemble for the strength data.
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In the following text, we present a few attributes with largest Peaon's cor-
relation coe cient r along with general trends, more detailed list is given in
Appendix Dl

Negatively correlated attributes (\strong players' attri butes")

The attributes most strongly correlated with the increasing stregth of player
(r < 0), are mainly a standard patterns with clear strategic meaning, ca part
of joseki sequence

The most strongly correlated attribute is the local sequence static, the av-
erage number of sente moves per ganref 0:512). This backs the assumption
that the concept of sente is indeed very important.

The second most strongly correlated attribute f =  0:480), the pattern
shown in Figure[5.4 (left), is a multi-purpose one-point jump. It can & found
being played under di erent circumstances. For instance, Black niig want to
prevent possible invasion (which could be related to the white stoneJhe pattern
also matches a common move of expanding one's territory, while peeting the
opponent to block this expansion.

The third strongest attribute (r = 0:457), is the di erence between number
of sente and gote sequences. The strength of this attribute isgtrably caused by
the fact that the number of sente sequences itself is very strang

The next two attributes are the patterns shown in FigureC5J4 (middleand
right). Both moves have a similar context | they are usually played on the
boundaries of competing forces. Such moves are usually of cruamportance.
For example, the horse movekeima) pattern (in the middle, r = 0:455) usually
prevents White from foiling Black's future development by jumping inb what
probably is a potential Black's territory.

The pattern on the right (r = 0:446), shows a one-point jump which tries
to get ahead of White and thus prevent White's possibility of shuttingBlack to
the side (without the marked black stone, White could play at, which would
probably be unbearable for Black).

Positively correlated attributes (\weak players' attribu tes")

On the other hand, the most strongly positively correlated attribtes (r > 0) are
the patterns that exhibit defects or ine ciencies in shape. The basexample of
this is the empty triangle shape|(Sensei's Library, 2013d), as shownFigure 5.5
(left). The fact that the two strongest (r = 0:437 andr = 0:402) bad shapes are
empty triangles backs the commonsense taught to beginners (\Dwt play the
empty triangle"). (The second strongest empty triangle patterrhas almost the
same con guration of stones as the rst one, with the exceptionhat the stone
(b) is not present.)

As expected, the beginners also tend to capture unnecessargrss | the
third strongest \weak" attribute (r = 0:377) was the number of captured stones
within rst 60 moves. The most likely reason for this is that beginnersre not able
to discern between important and unimportant stones and they tel to capture
because \they could" instead of because \it is the best move".

5The joseki are standard sequences of moves which ensure even result foithhplayers. The
joseki are mainly played in the opening and mainly regard corners andheir approaches.
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Figure 5.4: Top 3 negatively correlated patterns (\good moves").

7
Ay /
r =0:437, an empty r =0:351, an overly r = 0:325, pushing
triangle. The second solid connection. from behind.
pattern (r = 0:402)
does not have(p)
present.

Figure 5.5: Typical positively correlated patterns (\bad moves").

The next attribute is a solid connection ¢ = 0:351) depicted in the middle
of Figure[2.5. It looks like Black is trying to protect from the cut at@. Were
the cut really severe (and this is not sure), it would probably be a btdr idea to
connect atc (so that Black has a better eye-space), but we cannot give fueh
interpretation without seeing the rest of the board.

We should also mention another strongly correlated pattern whichame up
during the analysis and which is also very important. It is thepushing from
behind pattern (r = 0:325) shown in Figurd 5.5 (right). Generally, pushing from
behind is bad because it allows the opponent to play at, which is a very good
move | it limits Black's future development, while extends White's. Instead of
€. Black could e.g. play the horse move (Figure5.4, in the middle), or play
somewhere else.
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5.2 Style

Apart from the strength estimation, we also used the frameworkrpsented in this
work to test prediction of playing styles for professional playersl'he organization
of the text is similar to that of the strength. Firstly, we give details ¢ the
dataset (Section[5.2]1). Next, we investigate performance of drent feature
extractors (Section5.2.R). Using the best features found, wepdare possibilities
for prediction of the styles (Sectioii 5.2]3). Finally, we analyze the gte attributes
and their relation to di erent styles (Section[5.2.4).

5.2.1 Dataset

The collection of games in this dataset comes from the Games of Go Disk
(GoGoD) database by Hall { Fairbairn (winter 2011a). This database contas
more than 70 000 games, spanning from the ancient times to the peat.

We chose a small subset of well known players (mainly from the 20tantury)
and asked some experts (professional and strong amateur playeto evaluate
these players using a questionnairé. The experts (Alexander Dinerchtein 3-pro,
Motoki Noguchi 7-dan, Vladimr Darek 5-dan and Vt Brunner 4- dan) were asked
to value the players on four scales, each ranging from 1 to 10.

Style 1 10
Territoriality | Moyo | Territory
Orthodoxity | Classic| Novel
Aggressivity | Calm | Fighting

Thickness Safe | Shinogi

The scales try to re ect some of the traditionally perceived playingtgles.” For
example, the rst scale (erritoriality ) stresses whether a player prefers safe, yet
inherently smaller territory (number 10 on the scale), or roughly skched large
territory ( moyo, 1 on the scale), which is however insecure (we describe the scales
in more details below). Tablé 55 shows the data obtained from the cgi®nnaire.
The mean standard error of the answers is 1.164, which we regasiraasonably
consistent. Table[5#4 shows mean values of answers (across all gtegers) for
the styles along with standard deviation. On the right, the pairwise @rrelation
of the styles from the questionnaire is given (measured by the Psan'sr).

| Pearson's r
Style Mean value | Ter. | Orth. | Aggr. | Thick.
Territoriality | 5:670 2:390| 1.000| -0.526| -0.602| 0.566
Orthodoxity | 5:861 2:415 1.000 | 0.738 | -0.072
Aggressivity | 6:722 2:176 1.000 | 0.124
Thickness | 4:903 1.667 1.000

Table 5.4: The mean values of styles (across all the answers) ane thairwise
correlation between them.

SpPart of the data was reused from our previous work |(Bauds { Moudk, [2012).
"Refer to|Fairbairn (winter 2011), or Sensei's Library (2013j) to grasp the concept deeper.
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Player Territoriality Orthodoxity Aggressivity Thickness
Chen Yaoye 6:0 1.0 4.0 1.0 6:0 1.0 55 05
Cho Chikun 90 07 6:2 26 6:8 11 9.0 07

Cho U 7.2 20 52 15 6:0 19 6:2 15

Fujisawa Hideyuki 35 05 9.0 1.0 7.0 00 4.0 00
Go Seigen 6:0 20 9.0 10 80 10 50 10

Gu Li 6:2 13 7.8 15 92 08 50 1.9
Hane Naoki 75 05 25 05 4.0 0.0 45 1.5
Ishida Yoshio 85 15 40 21 30 12 48 11
Kato Masao 30 08 37 17 87 1.2 57 24

Kobayashi Koichi 93 09 20 08 2.7 05 4.3 1.7
Luo Xihe 7.3 09 7.3 25 77 09 6:0 14

Ma Xiaochun 82 19 52 19 52 18 6:8 23
Miyazawa Goro 1.5 05 160 0:0 95 05 40 1.0

O Meien 27 12 97 05 83 17 37 12
Otake Hideo 45 05 25 09 42 13 32 11
Rui Naiwei 55 1.8 55 05 90 07 40 16
Sakata Eio 80 16 4.0 1.2 78 11 82 15
Takao Shiniji 50 1.0 35 05 55 15 45 05

Takemiya Masaki 1.5 05 58 20 7.2 08 1.8 038
Yamashita Keigo 20 00 9.0 1.0 95 05 30 1.0
Yi Ch'ang-ho 75 18 52 1.9 38 18 35 05
Yi Se-tol 6:0 12 72 23 92 04 72 15
Yoda Norimoto 70 19 38 20 40 1.9 32 11
Yuki Satoshi 30 10 85 05 90 1.0 45 05

Table 5.5: Expert-based evaluation of styles of selected Professils, including

standard deviation of their answers. Only the players that were aluated by two
or more experts out of four are included.

For each of the professional players, we took 192 of his gamesfithe GoGoD
database at randonf We divided these games (at random) into 12 colored sets

GC of 16 games. For each player, we have one target variagléor each style |

basically, we view the problem as 4 di erent regression problems whishare the

feature extraction.

8We chose this number because the database does not contain magames for some of the

players.
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Feature Extractor RMSE Parameters
None 2.403 (obtained by mean regression learner)
Pattern feature 1.558 N = 600, linear normalization,
A randomly sampled as 20% of all the games.
Local sequences | 2.267 I =5
Border distance 1.663 ByDist = fh1;2i;h38i;hi;h5;1 )g,
ByMoves = fh1;16i;hl7,64i;h65 160 ;hl61 1 )g
Captured stones 2.381 ByMoves = th1;40i;M1;160;hl161; 1 )g
Win/Loss statistics | 2.362 |
Win/Loss points 2.415 | (see Footnote 9lon page[41)

Table 5.6: Comparison of the best feature extractors of each kinthe complete
list of features evaluated is given in Appendik Cl1. The learner used fevaluation

is given in Appendix[C.3. The results were computed using 5-fold validah by
averagingRMSE of all the styles. The last row shows performance of the mean
regression learner and serves for comparison.

5.2.2 Feature Evaluation

We evaluated di erent features from AppendiX_C.1L similarly as we did wit the
strength data | we have used the same initial hand tuned learner (4pendix[C.3)
as the evaluation learnell,.® Because the style regression essentially consists of
four di erent regression problems (one for each style) we could berm the anal-
ysis independently. Doing so would have several drawbacks | most iportantly
the features would not be easily comparable and the whole procedsfeature
extraction would be slowed down four times.

We therefore decided to evaluate the features regardiradl the styles. For
a given feature, we used thé., learner to learn four style regression problems,
the nal RMSE was computed as an average of thRMSE errors from the
subproblems. TheRMSE errors for subproblems were analyzed using 5-fold
cross-validation with the same random seed (which means that theliss were
the same for all the styles). The results are given in Table5.6.

5.2.3 Regression

Using the concatenation of the best feature extractors from gvious section, we
processed the data. Then, we used the genetic algorithm to detene the best
ensemble learner.

During the process, we have encountered over- tting problemscerning the
size of the dataset.

At rst, we chose the parameters of the GA to be the same as in theroblem
of strength (Table[5.2), with the exception of the tness function The RMSE
error was computed in the same manner as in the style feature exttion (one
learner for all the styles, the tness of a learner is averag®M SE on the di erent
styles). Similarly to the case of strength, it turned out that it was mt possible

9 Again with the exception of the Win/Loss points statistic, where we changed the number
of components of PLS regression to 2 (from 3 ithey). This was needed because this feature has
small dimension (2) which causes instability of the PLS with 3 latent variables.
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to use cross-validation on the full dataset because of time coratits. We tried
to workaround this by subsampling the data prior to the experimentbut due to
relatively small size of the dataset, this resulted in over- tting of he resulting
ensemble model.

Secondly, we tried not to use the cross-validation, but to use propional
division scheme instead | the tness is evaluated by randomly taking 0% of
the dataset for training and the rest for testing; in each of the itations, this
is done anew to mitigate any e ects caused by biased random split (ding
the dataset once prior to the run would cause over- tting). Unfaunately, this
too did not yield satisfactory results. Even though over- tting we not the case,
the genetic algorithm was not able to consistently improve the enséias | the
subsampled datasets in each of the iterations were too di erent tensure that
the best individiuals from one iteration would have good chances in timext one.
This rendered the genetic algorithm unsucessful.

Consequently we concluded, that the robust cross-validation witthe full
dataset is necessary and that we thus need to compensate foe timcreased re-
source consumption di erently. We did this by limiting the population siz to 10
individuals and most importantly, by limiting the ensemble to contain at nost 5
base learners. Technically, this is done by randomly removing excessnber of
base learners from each individual at the end of each iteration. Adidnally, we
decided to run the GA independently for each of the styles, insteauf optimizing
one ensemble learner for all the styles (as above). The paramste&f the nal
genetic algorithm are listed in Tabld5]7.

The performances of the best learners found are given in Talle]5.8dathe
learners are listed in AppendiXx_CJ. Development of thRMSE error in time is
given in Figure[5.6. Each run of the genetic algorithm (for di erent stles) took
approximately one hour of CPU time per iteration, the machine speatation is
given in Appendix[C.8.

Parameter Value
Set of base learner8L Is given in Appendix[C.2.
Population sizeS 10
Elite size E 1

Number of iterationsMax | 100
Mutation probability Pm, | 0.2
Mutation probability Pm, | 0.5
Ensemble size limit 5
Fitness function 1=RMSE of the resulting stacked learner. The
RMSE is computed using 5-fold cross-validation

Table 5.7: The parameters of the genetic algorithm for the style daset.

5.2.4 Attribute Evaluation

Following the same procedure we used in strength attribute evaluah, we scru-
tinized the dependences between the styles and di erent attribas. The results
have some signi cant properties. Generally, the opening moves (ieh in sense
form the shape of the following game) have high importance, as dors® other

42



RMSE
Learner Territoriality | Orthodoxity | Aggressivity | Thickness
Mean regression 2.403 2.421 2.179 1.682
Initial hand tuned . 1.434 1.636 1.423 1.484
The best GA learner 1.394 1.506 1.398 1.432

Table 5.8: Regression performance of di erent learners on the fulataset. The
feature set used is shown in Table 5.6. The results were computedngs5-fold
cross-validation.
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Figure 5.6: Evolution ofRMSE error during the run of the genetic algorithm for
nding an optimal stacking ensemble for the style data.

typical formations. Moreover, because the styles themselvesasorrelated with
each other (relatively strongly { Table[5.4), the results for di eren styles are
often related, as illustrated in the following text.

Territoriality

The scale of territoriality spans from the style which emphasizes mmpased,
in uence style of game (number 1 on the scale) and a style which stses safe
territory on the other side (number 10 on the scale). Regarding welations of
the attributes, this corresponds to positive Pearson's> 0 for the territorial style
andr < O for players preferring moyos.

The attributes seem to capture this scale exceedingly well, the celations are
strong and have clear interpretations. In the opening (rst 16 mees), increasing
territoriality is revealed by preference of third line movesr(= 0:621, the border
distance feature), while the moyo style is most strongly correlate@d = 0:555)
by playing to 5th line or higher. In line with the common knowledge, playig on
the fourth line in the opening (again, the border distance featureglso correlates
with moyo-based style of the gamer(= 0:530).

The pattern attributes seem to reveal the same information. Thetrongest
territory focused pattern is the horse move extension (most pioably a corner
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Figure 5.7: Territoriality. r > O for patterns correlated with increasing territori-
ality, r < O for patters which correlate with the moyo style of game.

enclosure) ofr = 0:537 and a slightly weaker two space third line extension of
r = 0:473. The strongest pattern with negativer = 0:317 is a move which
prevents White from connecting underneath | allowing the enemy toconnect
is often bad, because connected group are stronger and the iance-preferring
player wants to use his in uence to ght. All these pattern attributes are shown
in Figure [5.1.

Another interesting result is the fact, that the /
territoriality is also correlated with the di erence %
between average number of sente and gote moves
(r =0:347) and the average number of sente moves
(r = 0:336). Since the! = 5, which considers
rather tightly local responses, we believe that this
corresponds to moves which close the side in senfeigure 5.8:r = 0:292, secur-
(e.g. from sliding under the stones, as also backethg the side.
by a pattern attribute in Figure B.8).

Orthodoxity

The orthodoxity scale spans from 1 (players with a classic style, Asan'sr < 0)
and 10, which corresponds to a novel style of play ¢ 0).

The strongest attributes that correlate with classic style of gamare related to
that of territorial style from above. For example, the strongestclassic” attribute
is the number of stones on third line played in the opening with = 0:479; the
second strongest is the horse move enclosuree  0:456. The orthodox player
also likes the formation shown in the middle of Figure 5.9,= 0:374.

On the other hand, the novel player tends to play open-
ings stressing in uence by playing on the fourth liner =
0:429 or higherr = 0:317 (opening moves that are played
higher than on the fourth line are quite uncommon, not stud-
ied as thoroughly and thus probably giving possibilities forFigure 5.10: r =
innovative moves). Apart from the opening moves, attributes 0:249, a crosscut.
for novel players ¢ > 0) are generally weaker than those for
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Figure 5.9: Orthodoxity. r > 0O for novel players,r < 0 denotes a classical style
of game.

the classic player. This is not surprising, because novel players deto come
up with new and unigue moves; thus trying to nd a typical novel moe might
prove to be elusive. For example, the strongest pattern attribet with positive r,
the crosscut shown in Figuré 510, is not really a novel move. Howevi often
results in a complicated position, which could give opportunities for sprising
innovative moves.

Aggressivity

// /3 7
/,/ D) /
/ / %Z 7

7
r= 0:306, an r = 0:265, a corner r =0:262, a hane at
endgame move. invasion. the head of enemy
stones.

Figure 5.11: Aggressivity.r > 0 for players who like to ght, r < 0 marks a calm
player.

The aggressivity scale spans from the calm playing style (number fréoutes
correlating with decreasing aggressivity have< 0), to very aggressive game style
(number 10 on the scalet > 0), where the player loves to ght.

Again, (with a few interesting exceptions) the calm player tends tolgy on
the third line in the opening (r = 0:428), likes secure territory in the corner
(second strongest attributer =  0:426 is the same horse move enclosure from
previous styles), and safe two space extension= 0:403 (we omit these two
patterns, since the reader is already familiar with them from above)
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Moreover, he likes to play a 3-3 corner invasion = 0:265 Figure[5.11
(middle). Most probably, this is a part of the sequence showed in Figu5.12.
@ approaches the white 4-4 stong) is a very aggressive response, a so-called
pincer (Sensei's Library| 2013b)9 is a calm response, giving up th@ for now
and taking the corner instead.

Finally, the calm player tends to win by points
r = 0:349 more than the aggressive player. Inter-
estingly, the third strongest pattern correlated with
calmness was the endgame move £ 0:306) on the
left of Figure 5.11. This might mean that a strong 1)
calm player is aiming to win the game during the
endgame, which usually requires mechanically precise
reading and counting. (3]

The ghting player likes to play on the fourth line
in the opening { = 0:418). The second strongest at-
tribute (r = 0:334) of the ghting player is the number
of moves played above the fourth line in thearly mid- Figure 5.12: A standard
dle game(moves 17 to 64) | these moves might be joseki.
reductions of the opponents territory or preparations
of the battle eld for future running ghts. In line with our expectation, the
ghting player also tends to win by resigns = 0:234).

&
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Figure 5.13: Thickness.r > 0 for players who are skilled at shinogit < O for
player whose formations are safe.

Finally, there is the thickness scale. It spans from safe style of gangl,
r < 0) to shinogi style (10,r > 0). As discussed in Chapter 1.3.3, thick positions
have little or no weaknesses.Shinogi is a term used when a player skillfully
overcomes a crisis. The scale de nition is not that clear-cut in compaon with
the preceding scales, and also the variance of answers of the tjaesaire is lower
than the other scales.

The dependencies for the thickness scale are generally weakemtiase have
seen with the previous styles. Regarding the shinogi end of the ledhe strongest
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attribute is the number of opening moves played on the third liner(= 0:352),
followed by a third line pattern (r = 0:342) which could be a wide extension, or
a move intended to disrupt enemy side formation in the opening (Figel5.13, left).
Interestingly, the third strongest attribute with positive correlation (r = 0:288)
is a pattern attribute showing a contact move called clamp, which is &h a part
of tesuji (a cunning sequence which achieves something | e.g. saving a group,
capturing enemy's key stones, etc.). The next strong pattern oelated with
mastering the shinogi is the number of moves played on the rst oesond line
within the early middle gamer = 0:272. This could very well correspond to
moves that are securing life in an enemy's sphere of in uence, or plag stones
that will be sacri ced to yield an advantage | playing this low this early n either
builds a nice territory (third line is supreme in this), nor builds in uencedirectly.
The thick part of this scale does not yield dependencies with clear impzeta-
tion. The two strongest attributes with r < 0 are the number of moves played on
four line in the opening ¢ = 0:312), or above ( = 0:261). In line with this,
the third is the number of stones played above the fourth line in theagly middle
gamer = 0:224. These moves are not really moves characteristic for what we
consider thick.

We believe that the main reason for this is the 7722 | 7/
Takemiya Masaki, who is a strong outlier on this %f% /////
scale. Master Takemiya is known for building ex- // N
treme moyos and prefer in uence very strongly over i ‘é
safe territory. His games have often depended on %
whether the opponent lives inside the sketched moyo ///é
or not | so the score of 1.8 he received on the scale 777 )
of thickness maybe does not re ect the fact that he is ////?// *%/%
very thick and plays safely (which he does not), butFigure 5.14:r =  0:216,
the fact that his groups do not often need to shinogi,A very thick move, called
because it is the opponents who do. This probablythe iron pillar.
implies, that the scale of thickness was not chosen
very well. We treat this matter further in the discussion (Chaptei .

Only the fourth strongest negative attribute = 0:216) has clear interpre-
tation as a thick move, it is theiron pillar block shown in Figure 5.TH4.
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6. Discussion and Future Work

In this work, we dealt with many issues regarding the possibilities of iafence
of di erent variables (strength, styles) from collections of recats of the game of
Go. We found out that the inference of these variables is indeed pdde, under
few assumptions.

Most importantly, we need a set of robust features, that are genal enough
to capture information present in games, which is relevant to the tget vari-
able. Based on our knowledge of the game, we invented a number edtéres
(Chapter [3) and tested their performance under di erent settigs (Section$ 5.1]2
and[5.2.2). In line with our expectations, di erent target variables g best cap-
tured by di erent features and attributes. A clear example of thiswas seen in
the case of style: the histogram feature of distance from the bolaedge (in the
opening) proved to capture the territoriality very well (Section’5.2). Generally,
the pattern feature turned out to be the strongest for both tle strength and the
styles regression problems | this is because the pattern featuredsically consists
of statistics of many independerit patterns and the machine learning methods
can \pick" the ones that are relevant. Analysis of the individual attibutes (Sec-
tions[5.1.4 and 5.214) reveals, that all the features have useful alttutes for some
of the target variables | for example, the number of sente sequeses correlates
with strength, as did the number of captured stones in the early gae. To men-
tion one more example, the percentage of games won by resignatamrelates
with the aggressivity of a player.

Concerning the correlations, we need to say that except for thdr@ngest
correlation of a single attribute we have found, which had Pearson‘sof 0:627,
the dependencies were not very strong. The few best attributésr each variable
have what would be better called a moderate dependency, on awgeaspanning
fromr =0:25tor = 0:5. We conclude, that the feature space (de ned by di erent
features we have used) comprises many relatively weakly correthtgtributes and
only a few attributes that are correlated moderately. Overall, wet®uld also note
that we consider the fact that almost all of the most strongly coelated attributes
were in line with common Go knowledge to be a sign of good \expressiysiwer
of the features.

Secondly, to obtain the best performance, robust machine leargirmethods
(Chapter [4) are needed. These need to be powerful enough tokmaise of the
weak dependencies in the data. We have tested di erent algorithnjsout of
these, the method of stacked generalization turned out to haveimeme perfor-
mance. At rst, we tried to hand-tune the ensemble (Appendix_ CI3)to nd out
that this is too cumbersome and time-consuming if best performa@ds sought.
To solve the problem of nding the best combination of learners intohte stacked
ensemble, we designed a genetic algorithm, which showed an improgath of 3%
(for the strength data, Section[5.1.8) and of 6% (average impravent for the
style data, Sectiori 5.2.13) over the initial hand tuned ensemble, whiete consider

Lstrictly speaking, the attributes are truly independent only when independent normaliza-
tion (Section[3.2) is used.

2The correlation marks dependency between theerritoriality scale, and the number of
moves played on the third line during the opening phase, Sectioh 5.2.4.

3The baseline being the mean regression learner.
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a good result. This might not seem like a lot, but remember that we cqpmare
the best GA learner with the best hand-tuned learner we fouridd The ensembles
evolved by the genetic algorithm are fairly complex (e.g. Figuie™5.2) drwould
not be probably found by hand at all. It should be noticed, that the nathod of
the genetic algorithm does however take considerable amounts whe. In cases
where this would not be feasible, some worse (in terms of perfornecai yet faster
method could be used. For instance, bagged neural network oneifsperformed
pretty well (Table 5.3).

Finally, the scales need to be de ned clearly and we need reliably tagggata.
For example, the ranking system in the game of Go is very clearly desd by
means of handicap stones (Section 1.2). Similarly, the scale of etgrritoriality
seems to be de ned very well | judging by the results of the style rgression
(Section[5.2.8) and the fact that the strongest attributes seenotbe in accordance
with the traditional knowledge. On the other hand, the analysis oftlie strongest
attributes correlated with the thick-playing end ofthicknessscale (Section 5.2]1)
did not give patterns that really correlate with the traditional conept. The fact
that the thickness scale is somewhat di erent from the other stykecan also be
guessed from the standard deviation = 1:6 of the answers on the thickness scale
part of the questionnaire, which is much lower than that of the othrestyles (other
styles have ranging from 2.176 to 2.415, see Table 5.4). Were the answers on
the scale 1 to 10 distributed uniformly, the would be approximately 26.° This
basically means that the scale of thickness is not \used well". This is al®acked
up by the comment of one of the interviewees, Vladimr Darek, whanoted that
the concept of thickness is sometimes not in opposition to shinogi, thather in
coordination with it | when one plays thickly on one side of goban, he ofen
plays shinogi on the rest. The interviewees might thus simply have darstood
this scale as how skilled the particular pro essional is in playing shinogi.

Regarding the styles, one more point should be made. We have sd&at the
strongest attributes were often very similar. For example, the kght-move corner
enclosure appears for the territory stressing player, the playevith classic style
and the player who plays safely. This is in line with the correlations of #hscales
themselves (Tablé 5J4). It might be however interesting to look foromcepts that
are orthogonal

Future work and applications

Indeed, the methodology presented in this work could be extendedegarding
the prediction abilities, we believe that apart from increasing the daset size%
generally the only feasible way of further improvement is to add newdtures that
capture di erent aspects of the gameplay (or re ne the ones psented here). We
made this conclusion after trying many di erent learners and othemachine learn-
ing techniques. To name a few, we elaborated with the Support VectRegression
(Smola { Schelkopf, 2004), yet we were unable to get performaes comparable

40f course, the hand-tuned learner was tuned to the domain of sength, so the expected
improvement is naturally bigger for the case of styles.

SFrom de nition of standard deviation of random variable X from U(a;b), 2 = EX?
(EX)2=:::=(b a)?=12.

SWhich has clear computational limits.
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to any other methods and the SVM took considerable time to learh.We also
tried to preprocess the data by the Principal Component Analysislflli e/ 1986),
a commonly used method to reduce dimensi§rbut it did not yield any improve-
ment whatsoever. Observing the performance of learners withehcurrent set
of features suggests that there is a clear upper bound on preamsithat can be
achieved (see Tablg 5l3). We therefore believe that improving theafares is the
way to improve the performance further.

For example, we have devised a histogram feature which counts ruens of
captured stones (Section_3.4.2). A straightforward idea would b textend the
counts to include the dead stonésas well. Deciding which stones are dead and
which are alive is however in itself not an easy problem. Luckily, the dtss of
a stone (or a group of them) can be estimated using methods of tM®nte-Carlo
tree search’® By looking at the owner of a stone at the end of each random
simulation, the probable owner can be estimated. Moreover, this isstandard
part of the MCTS bots, such as the Pachi (Bauds et al., 2012) walready use to
extract the patterns. We plan to extend the Pachi to output thisinformation in
the future, the new feature could simply extend the captured stees histogram
from this work.

Adding new features and improving the prediction power is not impoaint
just for the sake of it, but also because of possible applications. rkastance, we
see some interesting potential in the attribute evaluations of thegttern feature.

Firstly, there is the educational potential | the attribute analysis of strength
gives us a list of patterns (or other attributes), that are mainly plged by weak
players (Sectiori5.14). By simply pointing out the fact that a certairmove is bad
and why is it so, we can give any particular weak player a direct advicegarding
his play. To test the idea, we have implemented this in the web applicatio
(Appendix[A) for the top few bad patterns. Of course, this can beliably" done
only for the most strongly correlated patterns, since the weakelependencies are
burdened by larger error.

Secondly, regarding the pattern attributes (and strength), tle attribute eval-
uation could help to improve computer Go programs. For a given sef pat-
ternst!, the method essentially gives weights of each pattern. This weightjn
might improve the random Monte-Carlo simulations, similarly as in|(Coulan,
2007). Moreover, this could even be used to balance the level o¢ thot | mak-
ing the bot do human-like bad moves could give more natural feel dfi¢ game
for a weak human player. As far as we are aware, this is a novel idea.

The strength estimation could also be used to help to determine initiadnking
of a player, both on the internet (where it often takes some time l@re the

"Apart from simple manual tuning, we also used (to no avail) the automatic parameter
searching techniques present in the Orange datamining frameworksee Appendix[B, Imple-
mentation).

8We tried to reduce the dimension by taking the coe cients of projection to base of rst
N components, for di erent values of N .

9Remember from Chapter[I.]l thatdead stones do not have two eyes and cannot be con-
nected with stones that arealive.

°We mentioned the Monte-Carlo tree search in Chapter 1l on pagé&l4,of instance, see
Browne et all (2012).

Wwe use the topN patterns from the data set (Chapter [3.2), but we could for exampe use
all the spatial con gurations up to a certain (reasonably small, e.g. 3 or 4) gridcular distance.
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ranking algorithm converges to the real value) and in the real mates. In the
near future, we plan to study how small could the number of gamesally be to
still give a reliable estimate of the strength. From some initial experients we
have performed with the strength dataset from Section 5.1.1, it ems that the
precision does not depend on the number of games, as far as thea is larger
than 10 games.

Similarly, precise prediction of style can serve as a tool for Go plagey we
can recommend professional games to review or point out some tigrto focus on
to balance player's skillset. We also realized this as a part of the webpdigation
(Appendix [A). Based on the user's predicted style, we compute theuclidean
distance to the professionals from the style questionnaire (Secti®.2.1) and
present the user those who are relevait We are aware of only two tools, that
do something alike, both of them are however based on a prede ngdestionnaire.
The rst one is the tool of Mr. Dinerchtein (2012) | the user answers 15 questions
and based on the answers he gets one of prede ned recommeiudet. The second
tool is not available at the time of writing, but the discussion at|(Serei's Library,
2013l) suggests, that it computed distances to some pros baseduser's answers
to 20 questions regarding the style. We believe, that our approashould be more
precise, because the evaluation takes into account many aspegftthe games. On
the other hand, since the style estimation in our work is trained on pfessional
players' data, inadequate skill of the user is surely a source of ems'3; it is
however a question for a further discussion whether the concept style as we
de ned it is even relevant for a beginner. Since the web application als us to
receive feedback on the style predicted, we plan to investigate tHigther in the
future.

2\We show the 4 professional players that are closest to the user dn4 that are farthest
apart, based on the euclidean distance, see the web application faletails.

Bwhich we unfortunately cannot even enumerate, since we have notyde data for weaker
players yet.
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Conclusion

In this work, we extended the methodology for extracting evaluans of players
from a sample of Go game records originally presented in (Bauds { dlidk,
2012). Firstly, we added more features and laid out a methodologgrftheir
comparison. Secondly, we developed a robust machine-learningreavork, which
is able to capture the dependencies between the evaluations andeyal target
variable using ensemble meta-learning with a genetic algorithm.

We applied this framework to two domains, estimation of strength ahstyles.
The results show that the inference of the target variables in botbases is viable
and reasonably precise, except for the style scale of thicknessichhwas not,
however, de ned well. Finally, we have presented a web applicationhieh realizes
the methodology, while presenting a prototype teaching aid for th&o players
and gathering more data.

Overall, we hope that the ndings of this work will be useful in deepang
both human and computer understanding of the game of Go.
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A. Web Application

The web application is published as a part of the GoStyle project, whicwe
founded to study the possibilities of the computer analysis of Go ganrecords
by methods presented in this work. [(Moudk { Bauds, 2013) The web of the
project has two main parts:

1. An interactive questionnaire!

2. The web application itself?

Interactive questionnaire

The sole purpose of the interactive questionnaitds to get preciser data about
the styles of professionals. It serves to substitute our old mettdaf gathering

information from strong players by e-mail and copying and formatip the infor-

mation by hand. The information obtained is the same as in the questioaire

from Section[5.2.1l. For a number of strong professional playersn¢halso a few
strong amateurs that are active on the Kiseido Go Server (ShulieP013a)), we
ask the interviewee to evaluate style of these players. See SechoA] for details
about the styles.

Web application

The web applicatiorf allows anyone to upload a sample of games (or specify
a Kiseido Go Server nickname). Based on the sample, we do sevehatds:

We estimate the strength of the player (as in Section5.1),
we estimate the style of the player (Section 5.2),

based on the estimated style, we reccomend a list of 4 professior(lem
Section[5.2.11) whose styles are closest (by computing Euclidean dsta
between the styles) and 4 professionals whose styles are farthes

Also, we compare the feature vector computed by the strengtlegression
with a linear model tted for the top \weak players' attributes” and in
case that the value of the attribute in the sample is corresponding tplay-
er who is weaker than 8-kyu, we warn the usér. This serves as a very
simple teaching aid. Currently, this approach is limited by the fact, that
the dependencies of single attributes are very weak and have laggeor, as
discussed in Chaptefl6.

! http://gostyle.j2m.cz/questionare.html

2 http://gostyle.j2m.cz/webapp.html

3We warn the user about the empty triangles, stones captured in tle opening, pushing from
behind, number of sente and gote sequences.
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Finally, we let the user correct the strength and style (if he thinks he
web application is mistaken). This feedback will allow us to improve the
methods in the future.

The source code for both the server and client part is available onlinas
detailed in the implementation (Appendix[B). Some screenshots of eéhweb ap-
plication follow.

r, tar, bzip2, gzip, ..., archive siz

x 19 goban, no handicap stone:

5en

ame field (PW, PB) filled (in most case
one whose name appears most times
name and we will download sor

. yvu.

Proceed!

Figure A.1: A portion of the Web Application, showing how can the useupload
data.

Strength

The strength of the player: 15k £ 2.5

The following image shows the strength (red line) with 68% confidence interval (blue line).

| ] I | |
5d  3d 1d 2k 4k ek 8k 10k 12k 14k 16k 18k 20K

Figure A.2: A portion of the Web Application, showing results of the sength
estimation for a weak player (whose real strength in this case is k@u).
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Figure A.3: A portion of the Web Application, showing results of style gimation
and similar professionals for a weak player.
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Figure A.4: A portion of the Web Application, showing some recommeiations
for a weak player.
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B. Implementation

The code used in this thestisis available on the attached CD, or released online as
a part of GoStyle project (Moudk { Bauds, 2013). The majo rity of the source
code is implemented in the Python programming languade.

The majority of the machine learning methods used were taken fromhe
Orange Datamining suite (Curk et al., 2005), with the exception of th Fast Ar-
ti cial Neural Network library FANN (Nissen, 2003) and our wrappe for this
library (Moudk, 2013).

We used the Pachi Go engine (Bauds et al., 2012) for the raw paitn feature
extraction.

Web Application

The server part of the web application is written in the Python progamming
language (Python Software Foundation, 2008), with aid of the Celg framework
for asynchronous task processing (Celery Project, 2013).

The client part is a standard combination of HTML and Javascript andit
uses the AngularJS framework (Google and community, 2013).

Lhttp://repo.or.cz/w/gostyle.git
2(Python Software Foundation, 2008)
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C. Parameters

C.1 Feature Extractors

Feature extractor

Settings

Pattern feature

Local sequences
Border distance
Captured stones

Win/Loss statistics
Win/Loss points

Normalization 2 findependentproportional;linearg,
N 2 f 200 400 600 800 100@ all combinations, A ran-
domly sampled as 20% of all the games in the domair

ByDist = fh1;2i;h3i;Mi;h5;1 )g, ByMoves =
fh1; Ai; (A;Bi;(B;Ci;(C;1)g, A 2 f1016g;B 2
f 44,54 64g; C 2 f 16Q 20Q 240y, all combinations?
ByMoves = fh1; Ai; (A;Bi;(B;1)g, A 2
f40;60,80g; B 2 f 16Q 20Q 240y, all combinations!?

|

L

! The bounds for the parameters were partially limited by hand tuning por to

experiments.

2 The motivation behind the relatively large number of boxes is to capte both
the very early opening and late opening/very early middle game, whiche
expected to have a big importance. The last two intervals should aespond
to late middle game and endgame.
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C.2 Base Learners and their Settings

Base learner Settings
Mean regression |
PLS regression 12f2;:::;109

k-nearest neighbors | k2f10,20;:::;609, 2f 10, 20g,

2 f Manhattan; Euclidearg, all combinations.
Random Forests N 2f5;10;25;50,100 200y

Neural network Desired 2 f 0:00L 0:005y, max 2
f50,100 200 500y iterations, 1 hidden layer
with number of neurons?2 f 10;20g, all combina-
tions. We used the symmetric sigmoid activatior]
function.! 2

Bagged Neural networks For ensemble sizes o2 f 20;40;60g, each Neural
network (from right above) was tested.

1 We have used a neural network with one hidden layer. The number wéurons
in the input and output layers depends on the dimensions of data. Meover,
the range of activation function is ( 1;1), while the range of domains of
dependent variables in the work is larger (e.gh 5;20 for strength data).
Therefore, we had to scale the data. Given a training sétr = f(x;;V;); :::0,
we mapped themin (y;) to -1 and max(y;) to 1 and the values in between
linearly. (Of course, the process is reversed when we predict thalue, to
give y's from the original range). The training data thus should not have
smaller domain than the testing data, or the error is increased. Witproper
training/testing data sampling, we did not nd this to be a problem.

2 The bounds for the parameters were partially limited by hand tuning por to
experiments, because training the neural network is computatiafly costly.

C.3 Initial Hand-tuned Learner

This learner was found by hand-tuning for the strength data and & use it as
a reference learner throughout the work.

Ensemble learner Settings
Stacking 4 folds, level 2 learner: Neural network with desired
= 0:005,max = 100 iterations, 1 hidden layer with
10 neurons.
Base learners Settings
Mean regression |
PLS regression =3
k-nearest neighbors | k =50, =20, = Manhattan.
Random Forests N =50
Bagged Neural network| 20  Bagged Neural network: desired = 0:001,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.
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C.4 Strength: Best GA Stacking Ensemble

Ensemble learner Settings

Stacking 6 folds, level 2 learner: Bagged (20 Neural network
with desired = 0:005, max = 500 iterations, 1
hidden layer with 10 neurons.

Base learners Settings

Mean regression |

PLS regression =3

Random Forests N =50

Neural network Desired = 0:001, max = 200 iterations, 1 hidden

layer with 20 neurons.

k-nearest neighbors | k=20, =20, =Euclidean.

k-nearest neighbors | k=40, =10, = Manhattan.

k-nearest neighbors | k=40, =10, = Euclidean.

k-nearest neighbors | k =40, =20, = Euclidean.

k-nearest neighbors | k=50, =10, = Manhattan.

k-nearest neighbors | k=50, =20, = Manhattan.

k-nearest neighbors | k=50, =20, =Euclidean.

k-nearest neighbors | k=60, =10, = Euclidean.

k-nearest neighbors | k =60, =20, = Euclidean.
Bagged Neural network] 20  Bagged Neural network: desired = 0:001,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.
Bagged Neural network| 40  Bagged Neural network: desired = 0:005,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.
Bagged Neural network| 40  Bagged Neural network: desired = 0:001,
max = 500 iterations, 1 hidden layer with 20 neu-
rons.
Bagged Neural network] 20  Bagged Neural network: desired = 0:005,
max = 200 iterations, 1 hidden layer with 20 neu-
rons.
Bagged Neural network| 40  Bagged Neural network: desired = 0:005,
max = 500 iterations, 1 hidden layer with 20 neu-
rons.
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C.5 Style: Best

C.5.1 Territoriality

GA Stacking Ensemble

Ensemble learner

Settings

Stacking 5 folds, level 2 learner: Bagged (40 Neural network
with desired = 0:001, max = 200 iterations, 1
hidden layer with 20 neurons.
Base learners Settings
PLS regression =3
k-nearest neighbors | k=20, =10, = Euclidean.

Bagged Neural network

Bagged Neural network

Bagged Neural network

40 Bagged Neural network: desired = 0:001,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.

40 Bagged Neural network: desired = 0:001,
max = 200 iterations, 1 hidden layer with 10 neu-
rons.

40 Bagged Neural network: desired = 0:005,
max = 50 iterations, 1 hidden layer with 10 neurons,

C.5.2 Orthodoxity

Ensemble learner

Settings

Stacking

6 folds, level 2 learner: Neural network with desire
= 0:001,max = 200 iterations, 1 hidden layer with
20 neurons.

Base learners Settings
PLS regression =3
k-nearest neighbors | k=40, =10, = Manhattan.
k-nearest neighbors | k =40, =20, = Manhattan.
Neural network Desired = 0:001, max = 50 iterations, 1 hidden

Bagged Neural network

layer with 20 neurons.

40 Bagged Neural network: desired = 0:005,
max = 200 iterations, 1 hidden layer with 20 neu-
rons.
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C.5.3 Aggressivity

Ensemble learner

Settings

Stacking

6 folds, level 2 learner: Bagged (20 Neural network
with desired = 0:005, max = 500 iterations, 1
hidden layer with 10 neurons.

Base learners

Settings

PLS regression
k-nearest neighbors
Neural network

Bagged Neural network

=3

k=10, =10, = Euclidean.

Desired = 0:001, max = 500 iterations, 1 hidden
layer with 10 neurons.

40 Bagged Neural network: desired = 0:005,
max = 100 iterations, 1 hidden layer with 20 neu-
rons.

C.5.4 Thickness

Ensemble learner

Settings

Stacking

2 folds, level 2 learner: Neural network with desired
= 0:005,max =500 iterations, 1 hidden layer with
20 neurons.

Neural network
Neural network

Bagged Neural network

Base learners Settings
Mean regression |
PLS regression =2

Desired = 0:005, max = 200 iterations, 1 hidden
layer with 10 neurons.

Desired = 0:001, max = 500 iterations, 1 hidden
layer with 20 neurons.

40 Bagged Neural network: desired = 0:005,
max = 500 iterations, 1 hidden layer with 10 neu-
rons.

C.6 Testing Machine Speci cation

The software was run on the GNU/Linux operating system with keral of version
3.4.10. The machine is powered by the 4-core Intel i3 CPU at 2.3 GHz.h&
tness evaluations for the Genetic algorithm were written to run in @rallel.
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D. Strength Attribute Evaluation

Table D.1 gives the rst 30 most strongly correlated attributes. Figres D.1
to D.3 show the spatial con gurations of the Pattern attributes. The Pearson's
I coe cient is negative for attributes mostly played by strong playes, andr > 0
for attributes that are played by weak players.

Because majority of the attributes in the Table D.1 are negatively ccelated,
we list some of the positively correlated attributes to complete theigture in

Table D.2.
Feature name | Pearson r | Attribute description
Local sequences -0.512 An average number of sente sequencész= 10
Pattern -0.480 | A one-point jump
Local sequences -0.457 | An average di erence between the number qf
sente and gote sequencek,= 10
Pattern -0.455 | A horse move
Pattern -0.446 | Jumping ahead
Pattern -0.438 | An attachment, part of a joseki sequence
Pattern 0.437 An empty triangle
Pattern -0.424 | A peep at a one-point jump
Pattern -0.409 | A general one-point approach move
Pattern 0.402 An empty triangle
Pattern -0.398 | A one-point approach move on the third line
Pattern -0.391 | An attachment in the corner
Pattern -0.381 A connection to prevent a cut
Pattern -0.381 | A diagonal move,kosumi
Captured stones 0.377 An average number of stones captured within
rst 60 moves.
Pattern -0.376 | A one-point jump (probably to the center)
Pattern -0.368 Pushing ahead
Pattern -0.366 | A horse move keima) corner approach
Pattern -0.364 | A peep at a one-point jump
Pattern -0.360 | A horse move approach
Local sequences -0.358 | An average number of gote moves, = 10
Pattern 0.351 A solid connection
Pattern -0.349 A hane at one stone
Pattern -0.348 An attachment to one stone
Pattern -0.346 | A horse move
Pattern -0.346 | Securing life in corner
Pattern -0.344 Cutting through a horse move
Captured stones 0.343 Average number of stones captured by oppd
nent within rst 60 moves.
Win/Loss points 0.342 Average number of points for lost games.
Pattern -0.341 | A horse move approach

Table D.1: List of attributes most strongly correlated with strengh.
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Feature name | Pearson r | Attribute description

Pattern 0.333 A \weird" shape
Win/Loss stat 0.331 Average di erence between number of games
lost by points and lost by resignation.
Pattern 0.325 Pushing from behind

Captured stones 0.324 Average number of stones captured by oppo-
nent in the middle game (move h61;240)
Pattern 0.317 An endgame move after opponent's mistake

Table D.2: List of some other positively correlated attributes.

0 B T B NEEL
By AL ‘o
r= 0480 r= 0455 r= 0446
e anrs

) (X
r= 0438 r= 0424
7 (A 3 (é
O e 7 &
r= 0409 r =0:402 r= 0:398

Figure D.1: First 9 most correlated pattern attributes, along with he Pearson's
correlation coe cient r.
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Figure D.2: Next 12 most correlated pattern attributes, along witlthe Pearson's
correlation coe cient r.
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Figure D.3: Further strongly correlated pattern attributes and heir Pearson's
correlation coe cient r.
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